2 термоядерный синтез проблема термоядерной энергетики. Проблемы управления термоядерным синтезом (УТС). Осуществление термоядерных реакций в земных условиях

1

Несмотря на полные абсолютной уверенности заявления достаточно авторитетных зарубежных специалистов о скором использовании энергии, которую, наконец, можно будет получать от термоядерных реакторов, - всё не так оптимистично. Термоядерная энергетика, казалось бы, такая понятная и доступная, на самом деле по-прежнему далека от широкого и повсеместного внедрения на практике. Недавно в Интернете снова появились радужные сообщения, уверяющие широкую общественность в том, что «не осталось практически никаких технических препятствий для создания в скором времени термоядерного реактора». Но ведь такая уверенность была и раньше. Казалось, что это очень перспективная и решаемая проблема. Но прошли десятки лет, а воз, что называется, и ныне там. Высокоэффективный экологически чистый источник энергии до сих пор остаётся неподвластным человечеству. Как и прежде это - перспективный предмет исследований и разработок, которые должны будут когда-то завершиться удачным проектом - и тогда энергия пойдёт к нам как из рога изобилия. Но дело в том, что столь долгое продвижение вперёд, больше похожее на топтание на месте, заставляет очень серьёзно задуматься и оценить создавшуюся ситуацию. Что если мы недооцениваем какие-то важные факторы, не учитываем значение и роль каких-либо параметров. Ведь даже в Солнечной системе есть так и не вступивший в эксплуатацию термоядерный реактор. Это планета Юпитер. Недостаток массы и гравитационного сжатия не позволили этому представителю планет-гигантов выйти на необходимую мощность и стать ещё одним Солнцем в Солнечной системе. Получается, что также как для обычного ядерного топлива существует критическая масса, необходимая для протекания цепной реакции, так и в данном случае существуют ограничивающие параметры. И если для того, чтобы как-то обойти ограничения по минимально необходимой массе при использовании традиционного ядерного заряда, используется сжатие материала в процессе взрыва, то и в случае создания термоядерных установок тоже нужны определённые нестандартные решения.

Проблема состоит в том, что плазму нужно не только получить, но и удержать. Нужна стабильность в работе создаваемого термоядерного реактора. Но с этим как раз большие проблемы.

Конечно, никто не будет спорить о преимуществах термоядерного синтеза. Это практически неограниченный ресурс для получения энергии. Но директор российского агентства ITER (речь идёт о международном экспериментальном термоядерном реакторе) справедливо отметил, что уже более 10 лет назад США и Англия получили энергию на термоядерных установках, но выход её был далёк от вложенной мощности. Максимум составлял даже менее 70 %. А ведь современный проект (ITER) предполагает получение в 10 раз большей мощности, по сравнению с вложенной. Поэтому очень настораживают заявления, о том, что проект технически сложный и в него будут вноситься коррективы, как, разумеется, и в даты запуска реактора, а, следовательно, возврата инвестиций государствам, вложившим средства в данную разработку.

Таким образом, возникает вопрос, насколько оправдана попытка заменить мощную гравитацию, удерживающую плазму в природных термоядерных реакторах (звёздах) магнитными полями - результатом творения инженерной мысли человека? Преимущество термоядерного синтеза - выделение энергии в миллионы раз превышающее тепловыделение, происходящее, например, при сжигании обычного топлива - именно оно, в то же самое время, является препятствием к успешному обузданию вырывающейся на свободу энергии. То, что легко решается достаточным уровнем гравитации, становится невероятно сложной задачей для инженеров и учёных. Поэтому так трудно разделить оптимизм относительно близких перспектив для термоядерной энергетики. Гораздо больше шансов пользоваться естественным термоядерным реактором - Солнцем. Этой энергии хватит ещё не менее чем на 5 миллиардов лет. И за счёт неё будут работать фотоэлементы, термоэлементы и даже какие-нибудь паровые котлы, для которых вода была бы нагрета с помощью линз или сферических зеркал.

Библиографическая ссылка

Силаев И.В., Радченко Т.И. ПРОБЛЕМЫ СОЗДАНИЯ УСТАНОВОК ДЛЯ ТЕРМОЯДЕРНОГО СИНТЕЗА // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 1. – С. 37-38;
URL: https://applied-research.ru/ru/article/view?id=4539 (дата обращения: 19.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» 9 июля 2016

Инновационные проекты с использованием современных сверхпроводников в ближайшее время позволят осуществить управляемый термоядерный синтез - так утверждают некоторые оптимисты. Эксперты, однако, предсказывают, что практическое применение займет несколько десятилетий.

Почему так сложно?

Энергия термоядерного синтеза считается потенциальным источником энергии будущего. Это чистая энергия атома. Но что же она собой представляет и почему ее так сложно добиться? Для начала следует разобраться с различием между классическим делением ядра и термоядерным синтезом.

Деление атома состоит в том, что радиоактивные изотопы - уран или плутоний - расщепляются и превращаются в другие высокорадиоактивные изотопы, которые затем должны быть захоронены или переработаны.

Реакция термоядерного синтеза заключается в том, что два изотопа водорода - дейтерий и тритий - сливаются в единое целое, образуя неядовитый гелий и единственный нейтрон, не производя радиоактивных отходов.

Проблема контроля

Реакции, которые происходят на Солнце или в водородной бомбе, - это синтез термоядерный, и перед инженерами стоит грандиозная задача - как контролировать этот процесс на электростанции?

Это то, над чем ученые работают начиная с 1960-х годов. Очередной экспериментальный реактор термоядерного синтеза под названием Wendelstein 7-X начал работу в северном немецком городе Грайфсвальде. Пока еще он не предназначен для создания реакции - это просто особая конструкция, которая проходит испытания (стелларатор вместо токамака).

Высокоэнергетичная плазма

Все термоядерные установки обладают общей чертой - кольцеобразной формой. В ее основе лежит идея использования мощных электромагнитов для создания сильного электромагнитного поля, имеющего форму тора - надутой велосипедной камеры.

Это электромагнитное поле должно быть настолько плотным, что, когда оно нагревается в микроволновой печи до одного миллиона градусов по Цельсию, в самом центре кольца должна появиться плазма. Затем она зажигается, чтобы синтез термоядерный мог начаться.

Демонстрация возможностей

В Европе в настоящее время проводится два подобных эксперимента. Одним из них является Wendelstein 7-X, который недавно сгенерировал свою первую гелиевую плазму. Другой - ITER - огромная экспериментальная установка термоядерного синтеза на юге Франции, которая все еще находится в стадии строительства и будет готова к запуску в 2023 году.

Предполагается, что на ITER будут происходить настоящие ядерные реакции, правда, лишь в течение короткого периода времени и уж точно не дольше 60 минут. Этот реактор является лишь одним из многих шагов на пути к тому, чтобы на практике осуществить ядерный синтез.

Термоядерный реактор: меньше и мощнее

Недавно несколько конструкторов объявили о создании нового дизайна реактора. По словам группы студентов из Массачусетского технологического института, а также представителей компании - производителя вооружений «Локхид Мартин», термоядерный синтез можно осуществить в установках, которые гораздо мощнее и меньше, чем ITER, и они готовы сделать это в течение десяти лет.

Идея новой конструкции заключается в использовании в электромагнитах современных высокотемпературных сверхпроводников, которые проявляют свои свойства при охлаждении жидким азотом, а не обычных, для которых необходим жидкий гелий. Новая, более гибкая технология позволит полностью изменить конструкцию реактора.

Клаус Хеш, отвечающий за технологии ядерного синтеза в Технологическом институте Карлсруэ на юго-западе Германии, настроен скептически. Он поддерживает использование новых высокотемпературных сверхпроводников для новых конструкций реакторов. Но, по его словам, что-то разработать на компьютере с учетом законов физики недостаточно. Необходимо принять во внимание вызовы, которые возникают при воплощении идеи на практике.

Научная фантастика

По словам Хеша, модель студентов MIT показывает лишь возможность осуществления проекта. Но на самом деле в ней много научной фантастики. Проект предполагает, что серьезные технические проблемы термоядерного синтеза решены. Но современная наука не имеет ни малейшего представления о том, как их решить.

Одной из таких проблем является идея разборных катушек. Для того чтобы попасть внутрь кольца, удерживающего плазму, в модели MIT-дизайна электромагниты могут быть разобраны.

Это было бы очень полезно, потому что можно бы было иметь доступ к объектам во внутренней системе и заменять их. Но в действительности сверхпроводники выполнены из керамического материала. Сотни их должны быть переплетены изощренным способом, чтобы сформировать правильное магнитное поле. И здесь возникают более фундаментальные трудности: соединения между ними не так просты, как соединения медных кабелей. Никто еще даже не задумывался о концепциях, которые бы помогли решить подобные проблемы.

Слишком горячо

Высокая температура также представляет собой проблему. В сердцевине термоядерной плазмы температура достигнет около 150 миллионов градусов по Цельсию. Эта экстремальная жара остается на месте - прямо в центре ионизированного газа. Но даже вокруг нее все еще очень жарко - от 500 до 700 градусов в зоне реактора, являющейся внутренним слоем металлической трубы, в которой будет «воспроизводиться» тритий, необходимый для того, чтобы происходил ядерный синтез.

Термоядерный реактор имеет еще большую проблему - так называемый выпуск мощности. Это часть системы, в которую из процесса синтеза поступает использованное топливо, в основном гелий. Первые металлические компоненты, в которые попадает горячий газ, называются «дивертор». Он может нагреваться свыше 2000 °C.

Проблема дивертора

Чтобы установка могла выдерживать такие температуры, инженеры пытаются использовать металлический вольфрам, применяемый в старомодных лампах накаливания. Температура плавления вольфрама около 3000 градусов. Но есть и другие ограничения.

В ITER это можно сделать, потому что нагрев в ней происходит не постоянно. Предполагается, что реактор будет работать лишь 1-3 % времени. Но это не вариант для электростанции, которая должна работать в режиме 24/7. И, если кто-то утверждает, что способен построить меньший реактор с такой же мощностью, как ITER, можно уверенно сказать, что у него нет решения проблемы дивертора.

Электростанция через несколько десятилетий

Тем не менее ученые с оптимизмом смотрят на развитие термоядерных реакторов, правда, оно будет не таким быстрым, как предсказывают некоторые энтузиасты.

ITER должен показать, что управляемый термоядерный синтез на самом деле может произвести больше энергии, чем будет затрачено на нагрев плазмы. Следующим шагом будет строительство совершенно новой гибридной демонстрационной электростанции, которая бы на самом деле вырабатывала электроэнергию.

Инженеры уже сейчас работают над ее дизайном. Они должны будут извлечь уроки из ITER, запуск которой запланирован на 2023 г. Принимая во внимание время, необходимое для проектирования, планирования и строительства, кажется маловероятным, что первая термоядерная электростанция будет запущена намного раньше середины XXI века.

Холодный термоядерный синтез Росси

В 2014 году независимый тест реактора E-Cat пришел к выводу, что устройство в течение 32 дней в среднем производило 2800 Вт выходной мощности при потреблении 900 Вт. Это больше, чем способна выделить любая химическая реакция. Результат говорит либо о прорыве в термоядерном синтезе, либо об откровенном мошенничестве. Отчет разочаровал скептиков, которые сомневаются в том, была ли проверка действительно независимой и предполагают возможную фальсификацию результатов тестирования. Другие занялись выяснением «секретных ингредиентов», которые позволяют осуществить термоядерный синтез Росси, чтобы воспроизвести эту технологию.

Росси - мошенник?

Андреа импозантен. Он издает воззвания к миру на уникальном английском в разделе комментариев своего веб-сайта, претенциозно названного «Журнал ядерной физики». Но его предыдущие неудачные попытки включали итальянский проект превращения мусора в топливо и термоэлектрический генератор. Petroldragon, проект переработки отходов в источник энергии, не удался отчасти потому, что нелегальное захоронение отходов контролируется итальянской организованной преступностью, которая возбудила против него уголовное дело о нарушении правил обращения с отходами. Также он создал термоэлектрическое устройство для Инженерного корпуса сухопутных войск США, но во время тестирования гаджет произвел лишь часть заявленной мощности.

Многие не доверяют Росси, а главный редактор New Energy Times прямо назвал его уголовником, за плечами которого череда неудачных энергетических прожектов.

Независимая проверка

Росси заключил контракт с американской компанией Industrial Heat на проведение годичных секретных испытаний 1-МВт установки холодного термоядерного синтеза. Устройство представляло собой транспортировочный контейнер, упакованный десятками E-Cat. Эксперимент должен был контролироваться третьей стороной, которая бы могла подтвердить, что действительно имеет место генерация тепла. Росси утверждает, что провел большую часть прошлого года, практически живя в контейнере, и наблюдал за операциями в течение более 16 ч в сутки, чтобы доказать коммерческую жизнеспособность E-Cat.

Тест завершился в марте. Сторонники Росси с нетерпением ждали отчета наблюдателей, надеясь на оправдание своего героя. Но в итоге они получили судебный процесс.

Судебное разбирательство

В своем заявлении в суд Флориды Росси утверждает, что тест прошел успешно и независимый арбитр подтвердил, что реактор E-Cat производит в шесть раз больше энергии, чем потребляет. Он также утверждал, что компания Industrial Heat согласилась заплатить ему 100 млн долларов США - 11,5 млн авансом после 24-часового испытания (якобы за права лицензирования, чтобы компания могла продавать эту технологию в США) и еще 89 млн после успешного завершения расширенного испытания в течение 350 дней. Росси обвинял IH в проведении «мошеннической схемы», целью которой была кража его интеллектуальной собственности. Он также обвинил компанию в незаконном присвоении реакторов E-Cat, незаконном копировании инновационных технологий и продуктов, функциональных возможностей и конструкций и неправомерной попытке получить патент на его интеллектуальную собственность.

Золотая жила

В другом месте Росси утверждает, что на фоне одной из его демонстраций компания IH получила от инвесторов 50-60 млн долларов и еще 200 млн от Китая после воспроизведения с участием китайских должностных лиц высшего уровня. Если это правда, то на кону намного больше ста миллионов долларов. Industrial Heat отвергла эти претензии как безосновательные и собирается активно защищаться. Что еще более важно, она утверждает, что «в течение более трех лет работала над подтверждением результатов, которых якобы добился Росси со своей E-Cat-технологией, и все безуспешно».

IH не верит в работоспособность E-Cat, и журнал New Energy Times не видит причин, чтобы в этом сомневаться. В июне 2011 года представитель издания посещал Италию, взял интервью у Росси и заснял демонстрацию его E-Cat. Через сутки он сообщил о своих серьезных опасениях относительно способа измерения тепловой мощности. Через 6 дней журналист выложил свое видео на YouTube. Эксперты со всего мира присылали ему анализы, которые были опубликованы в июле. Стало ясно, что это был обман.

Экспериментальное подтверждение

Тем не менее ряду исследователей - Александру Пархомову из Российского университета дружбы народов и Проекту памяти Мартина Флейшмана (MFPM) - удалось воспроизвести холодный термоядерный синтез Росси. Отчет MFPM назывался «Конец углеродной эры близок». Причиной такого восхищения стало обнаружение всплеска гамма-излучения, которое невозможно объяснить иначе, как термоядерной реакцией. По мнению исследователей, у Росси есть именно то, о чем он говорит.

Жизнеспособный открытый рецепт холодного ядерного синтеза способен вызвать энергетическую «золотую лихорадку». Могут быть найдены альтернативные методы, которые позволят обойти патенты Росси и оставить его в стороне от многомиллиардного энергетического бизнеса.

Так что, возможно, Росси предпочел бы избежать этого подтверждения.

Извлечение ядерной энергии основано на том фундаментальном факте, что ядра химических элементов из середины таблицы Менделеева упакованы плотно, а по краям таблицы, т.е. самые лёгкие и самые тяжёлые ядра – менее плотно. Наиболее плотно упакованы ядра железа и его соседи по периодической системе. Поэтому мы выигрываем энергию в двух случаях: когда мы делим тяжёлые ядра на более мелкие осколки, и когда мы склеиваем лёгкие ядра в более крупные.

Соответственно, энергию можно извлекать двумя способами: в ядерных реакциях деления тяжёлых элементов – урана, плутония, тория или в ядерных реакциях синтеза (слипания) лёгких элементов – водорода, лития, бериллия и их изотопов. В природе, в естественных условиях реализуются оба типа реакций. Реакции синтеза идут во всех звёздах, включая солнце, и являются практически единственным исходным источником энергии на Земле – если не непосредственно через солнечный свет, то опосредованно – через нефть, уголь, газ, воду и ветер. Природная реакция деления имела место на Земле около 2-х миллиардов лет назад на территории нынешнего Габона в Африке: там случайно скопилось много урана в одном месте, и в течение 100 миллионов лет работал природный ядерный реактор! Потом концентрация урана уменьшилась, и природный реактор заглох.

В середине XX века человечество приступило к искусственному освоению гигантской энергии, заключённой в ядрах. Атомная бомба (урановая, плутониевая) «работает» на реакции деления, водородная бомба (которая вовсе не из водорода, но называется так) – на реакции синтеза. В бомбе реакции идут одно мгновение и носят взрывной характер. Можно уменьшить интенсивность ядерных реакций, растянуть их во времени и использовать их разумно в качестве управляемого источника энергии. В мире построены многие сотни ядерных реакторов разного типа, где идут реакции деления, и «сжигаются» тяжёлые элементы – уран, торий или плутоний. Возникла также задача сделать управляемой реакцию синтеза, чтобы и она служила источником энергии.

На осуществление управляемой реакции деления человечеству потребовалось лишь несколько лет. Однако управляемая реакция синтеза оказалась намного более трудной задачей, с которой до конца ещё не справились. Дело в том, что для того, чтобы два лёгких ядра, например, дейтерия и трития, могли слиться, им надо преодолеть большой потенциальный барьер.

Наиболее прямолинейный способ добиться этого – разогнать два лёгких ядра до высокой энергии, так чтобы они сами проскочили барьер. Это подразумевает, что смесь дейтерия и трития должна быть разогрета до очень высокой температуры – порядка 100 млн. градусов! При такой температуре смесь, разумеется, ионизована, т.е. представляет собой плазму. Плазму удерживают в сосуде в форме бублика магнитным полем сложной конфигурации и разогревают. Эта установка, изобретение И.Е.Тамма,А.Д.Сахарова, Л.А.Арцимовича и др., называется «токамак». Главная проблема здесь – добиться стабильности очень горячей плазмы, чтобы она не «высадилась на стенки» сосуда. Это требует больших размеров установки и соответственно очень сильных магнитных полей в большом объёме. Принципиальных трудностей здесь почти нет, но есть множество технических проблем, которые пока не решены.

Недавно начали строить международную установку ИТЭРв районе Экс-ан-Прованса во Франции. В проекте активно участвует и Россия, внося 1/11 финансирования. К 2018 году международный токамак должен заработать и продемонстрировать принципиальную возможность генерации энергии за счёт термоядерной реакции синтеза

где d – ядро дейтерия (один протон и один нейтрон), t – ядро трития (один протон и два нейтрона), He – ядро гелия (два протона и два нейтрона), n – нейтрон, рождающийся в результате реакции, а «17.6 МэВ» – энергияв мега-электрон-вольтах, выделяющаяся в единичной реакции. Эта энергия в десятки миллионов раз больше той, которая выделяется при химических реакциях, например при горении органического топлива.

Здесь «топливом», как мы видим, служит смесь дейтерия и трития. Дейтерий («тяжёлая вода») содержится в виде малой примеси в любой воде, и технически выделить его несложно. Запасы его, действительно, не ограничены. Тритий же в природе не встречается, так как он радиоактивен и распадается за 12 лет. Стандартный способ получения трития – из лития путём бомбардировки его нейтронами. Предполагается, что в ИТЭРе будет нужна только малая «затравка» трития для запуска реакции, а дальше он будет нарабатываться сам собой за счёт бомбардировки нейтронами из реакции (1) литиевого «бланкета», т.е. «одеяла», оболочки токамака. Поэтому фактически топливом служит литий. В земной коре его тоже много, но нельзя сказать, что лития неограниченное количество: если бы вся энергия в мире производилась сегодня за счёт реакции (1), разведанных месторождений необходимого для этого лития хватило бы на 1000 лет. Примерно на столько же лет хватит разведанного урана и тория, если производить энергию в обычных ядерных котлах .

Так или иначе, самоподдерживающуюся термоядерную реакцию синтеза (1) на современном уровне науки и техники реализовать, по-видимому, можно, и есть надежда, что это будет успешно продемонстрировано лет через десять на установке ИТЭР. Это очень интересный проект и в научном, и в технологическом плане, и хорошо, что наша страна участвует в нём. Тем более, что это тот не слишком частый случай, когда Россия не только находится на мировом уровне, но во многом и задаёт этот мировой уровень.

Вопрос в другом – может ли «термояд» служить основой для промышленного получения «чистой» и «неограниченной» энергии, как утверждают энтузиасты проекта. Ответ, по-видимому, отрицательный, и вот почему.

Дело в том, что нейтроны, образующиеся при синтезе (1), сами по себе гораздо ценнее, чем та энергия, которая при этом выделяется.

Но чайники греть на нейтронах – разбой,

И здесь мы дадим расточителям бой:

Укроем активную зону

Урановым бланкетом – вона!

(из «Баллады о мюонном катализе», Ю.Докшицер и Д.Дьяконов, 1978 )

Действительно, если обложить поверхность токамака толстым «бланкетом» из самого обыкновенного природного урана-238, то под действием быстрого нейтрона из реакции (1), ядро урана расщепляется с выделением дополнительной энергии около 200 МэВ. Обратим внимание на числа:

Реакция синтеза (1) даёт энергию 17,6 МэВ в токомаке, плюс нейтрон

Последующая реакция деления в урановом бланкете даёт около 200 МэВ.

Таким образом, если уж мы построили сложную термоядерную установку, то сравнительно простая добавка к нему в виде уранового бланкета позволяет увеличить производство энергии в 12 раз!

Примечательно, что уран-238 в бланкете не обязан быть очень чистым или обогащённым: наоборот, годится и обеднённый уран, которого остаётся много в отвалах после обогащения, и даже отработанное ядерное топливо из обычных тепловых атомных станций. Вместо того, чтобы хоронить отработанное топливо, можно с большой пользой употребить его в урановом бланкете.

На самом деле, эффективность увеличивается ещё больше, если учесть, что быстрый нейтрон, попадая в урановый бланкет, вызывает много разнообразных реакций, в результате которых, помимо выделения 200 МэВ энергии, образуется ещё несколько ядер плутония. Таким образом, урановый бланкет служит ещё и мощным производителем нового ядерного топлива. Плутоний можно потом «сжечь» на обычной тепловой атомной станции, с эффективным выделением ещё примерно 340 МэВ на каждое ядро плутония.

Даже с учётом того, что один из дополнительных нейтронов надо использовать на воспроизводство топливного трития, добавление к токамаку уранового бланкета и нескольких обычных атомных станций, которые «питаются» плутонием из этого бланкета, позволяет увеличить энергоэффективность токамака по меньшей мере раз в двадцать пять , а по некоторым оценкам – в пятьдесят раз! Это всё – сравнительно простая и отработанная технология. Ясно, что ни один здравомыслящий человек, ни одно правительство, ни одна коммерческая организация не упустит такой возможности многократно повысить эффективность производства энергии.

Если дело дойдёт до промышленного производства, то термоядерный синтез на токомаке будет по существу всего лишь «затравкой», всего лишь источником драгоценных нейтронов, а 96% энергии всё равно будет производиться в реакциях деления, и основным топливом соответственно будет уран-238. «Чистого» термояда, таким образом, не будет никогда.

Более того, если наиболее сложная, дорогостоящая и наименее отработанная часть этой цепочки – термоядерный синтез – производит менее 4% от окончательной мощности, то возникает естественный вопрос, а нужно ли вообще это звено? Может быть, существуют более дешёвые и эффективные источники нейтронов?

Возможно, что в недалёком будущем будет придумано что-то совсем новое, но уже сейчас имеются наработки, как вместо термояда использовать другие источники нейтронов, чтобы беспрепятственно «сжигать» природный уран-238 или торий. Имеются в виду

Реакторы-размножители (бридеры) на быстрых нейтронах

(2-ой пункт недавней саровской программы)

Электроядерный бридинг

Ядерный синтез при невысокой температуре с помощью мюонного катализа.

Каждый метод имеет свои сложности и свои достоинства, и каждый достоин отдельного рассказа. Отдельного разговора заслуживает также ядерный цикл, основанный на тории, что особенно актуально для нас, поскольку в России тория больше, чем урана. Индия, где похожая ситуация, уже выбрала торий как основу своей будущей энергетики. Многие люди и в нашей стране склоняются к тому, что ториевый цикл – наиболее экономичный и безопасный метод производства энергии практически в неограниченном количестве.

Сейчас Россия стоит на распутье: надо выбрать стратегию развития энергетики на много десятилетий вперёд. Для выбора оптимальной стратегии необходимо открытое и критическое обсуждение научным и инженерным сообществом всех аспектов программы.

Эта заметка посвящается памяти Юрия Викторовича Петрова (1928-2007), замечательного учёного и человека, доктора физ.-мат. наук, заведующего сектором Петербургского института ядерной физики РАН, который научил автора тому, что здесь написано .

Ю.В.Петров, Гибридные ядерные реакторы и мюонный катализ , в сборнике «Ядерная и термоядерная энергетика будущего», М., Энергоатомиздат (1987), с. 172.

С.С.Герштейн, Ю.В.Петров и Л.И.Пономарёв, Мюонный катализ и ядерный бридинг, Успехи физических наук, т. 160, с. 3 (1990).

На снимке: Ю.В Петров (справа) и лауреат Нобелевской премии по физике Ж.‘т Хофт, фото Д.Дьяконова (1998).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

ГОУ ВПО «Благовещенский государственный педагогический университет»

Физико-математический факультет

Кафедра общей физики

Курсовая работа

на тему: Проблемы термоядерного синтеза

по дисциплине: Физика

Исполнитель: В.С. Клетченко

Руководитель: В.А. Евдокимова

Благовещенск 2010

Введение

Проект ИТЭР

Заключение

Литература

Введение

В настоящее время человечество не может представить свою жизнь без электроэнергии. Она везде. Но традиционные способы получения электроэнергии не дешевые: только представить возведение ГЭС или реактора АЭС, то сразу становится понятно почему. Ученые 20-го века, перед лицом энергетического кризиса, нашли способ получения электроэнергии из вещества, количество которого не ограничено. Термоядерные реакции протекают при распаде дейтерия и трития. В одном литре воды содержится дейтерия столько, что при термоядерном синтезе может выделиться столько энергии, сколько получается при сжигании 350 литров бензина. То есть можно сделать вывод, что вода - это неограниченный источник энергии.

Если бы получение энергии с помощью термоядерного синтеза было бы настолько просто, как при помощи ГЭС, то человечество никогда не испытывало бы кризиса в энергетике. Для получения энергии таким способом необходима температура, эквивалентная температуре в центре солнца. Где взять такую температуру, как дорого будут стоить установки, насколько выгодна такая добыча энергии и безопасна ли такая установка? На эти вопросы будет дан ответ в настоящей работе.

Цель работы: изучение свойств и проблем термоядерного синтеза.

Термоядерные реакции и их энергетическая выгодность

Термоядерная реакция - синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер.

Известно, что ядро атома водорода представляет собой протон р. Такого водорода очень много в природе – в воздухе и в воде. Кроме этого существуют более тяжелые изотопы водорода. Ядро одного из них содержит, кроме протона р, еще и нейтрон n. Называется этот изотоп дейтерием D. Ядро другого изотопа содержит, кроме протона р два нейтрона n и называется тритерием (тритием) Т. Термоядерные реакции наиболее эффективно происходят при сверхвысоких температурах порядка 10 7 – 10 9 К. При термоядерных реакциях выделяется очень большая энергия, превышающая энергию, которая выделяется при делении тяжелых ядер. В реакции синтеза выделяется энергия, которая в расчете на 1кг вещества значительно больше энергии, выделяющейся в реакции деления урана. (Здесь под выделяющейся энергией понимается кинетическая энергия частиц, образующихся в результате реакции.) Например, при реакции слияния ядер дейтерия 1 2 D и трития 1 3 Т в ядро гелия 2 4 Не:

1 2 D + 1 3 Т → 2 4 Не + 0 1 n,

Выделяется энергия, приблизительно равная 3,5 МэВ на один нуклон. В реакциях деления энергия на один нуклон составляет около 1 МэВ.

При синтезе ядра гелия из четырех протонов:

4 1 1 p→ 2 4 Не + 2 +1 1 е,

выделяется еще большая энергия, равная 6,7 МэВ на одну частицу. Энергетическая выгодность термоядерных реакций объясняется тем, что удельная энергия связи в ядре атома гелия значительно превышает удельную энергию связи ядер изотопов водорода. Таким образом, при удачном осуществлении управляемых термоядерных реакций человечество получит новый мощный источник энергии.

Условия протекания термоядерных реакций

Для слияния легких ядер необходимо преодолеть потенциальный барьер, обусловленный кулоновским отталкиванием протонов в одноименно положительно заряженных ядрах. Для слияния ядер водорода 1 2 D их надо сблизить на расстояние r, равное приблизительно r ≈ 3 10 -15 м. Для этого нужно совершить работу, равную электростатической потенциальной энергии отталкивания П=е 2 : (4πε 0 r) ≈ 0,1 МэВ. Ядра дейтона смогут преодолеть такой барьер, если при соударении их средняя кинетическая энергия 3 / 2 kT будет равна 0,1 МэВ. Это возможно при Т=2 10 9 К. Практически температура, необходимая для протекания термоядерных реакций снижается на два порядка и составляет 10 7 К.

Температура порядка 10 7 К характерна для центральной части Солнца. Спектральный анализ показал, что в веществе Солнца, как и многих других звезд, имеется до 80% водорода и около 20% гелия. Углерод, азот и кислород составляют не более 1% массы звезд. При огромной массе Солнца (≈ 2 10 27 кг) количество этих газов достаточно велико.

Термоядерные реакции происходят на Солнце и звездах и являются источником энергии, обеспечивающим их излучение. Ежесекундно Солнце излучает энергию3,8 10 26 Дж, что соответствует уменьшению его массы на 4,3 млн. тонн. Удельное выделение энергии Солнца, т.е. выделение энергии, приходящееся на единицу массы Солнца в одну секунду, равно 1,9 10 -4 Дж/с кг. Оно весьма мало и составляет около 10 -3 % от удельного выделения энергии в живом организме в процессе обмена веществ. Мощность излучения Солнца практически не изменилась за много миллиардов лет существования Солнечной системы.

Один из путей протекания термоядерных реакций на Солнце – углеродно-азотный цикл, в котором соединение ядер водорода в ядро гелия облегчается в присутствии ядер углерода 6 12 С играющих роль катализаторов. В начале цикла быстрый протон проникает в ядро атома углерода 6 12 С и образует неустойчивое ядро изотопа азота 7 13 N с излучением γ-кванта:

6 12 С + 1 1 p→ 7 13 N + γ.

С периодом полураспада 14 минут в ядре 7 13 N происходит превращение 1 1 p→ 0 1 n + +1 0 е + 0 0 ν е и образуется ядро изотопа 6 13 С:

7 13 N→ 6 13 С + +1 0 е + 0 0 ν е.

приблизительно через каждые 32 млн. лет ядро 7 14 N захватывает протон и превращается в ядро кислорода 8 15 О:

7 14 N+ 1 1 p→ 8 15 О + γ.

Неустойчивое ядро 8 15 О с периодом полураспада 3 минуты испускает позитрон и нейтрино и превращается в ядро 7 15 N:

8 15 О→ 7 15 N+ +1 0 е+ 0 0 ν е.

Цикл завершается реакцией поглощения ядром 7 15 N протона с распадом его на ядро углерода 6 12 С и α-частицу. Это происходит приблизительно через 100 тысяч лет:

7 15 N+ 1 1 p→ 6 12 С + 2 4 Не.

Новый цикл начинается вновь с поглощением углеродом 6 12 С протона, исходящего в среднем через 13 миллионов лет. Отдельные реакции цикла отдалены во времени промежутками, которые являются по земным масштабам времени непомерно большими. Однако цикл является замкнутым и происходит непрерывно. Поэтому различные реакции цикла происходят на Солнце одновременно, начавшись в разные моменты времени.

В результате этого цикла четыре протона сливаются в ядро гелия с появлением двух позитронов и γ-излучения. К этому нужно добавить излучение, возникающее при слиянии позитронов с электронами плазмы. При образовании одного гамматома гелия выделяется 700 тысяч кВт ч энергии. Это количество энергии компенсирует потери энергии Солнца на излучение. Расчеты показывают, что количества водорода, имеющегося на Солнце, хватит на поддержание термоядерных реакций и излучения Солнца на миллиарды лет.

Осуществление термоядерных реакций в земных условиях

Осуществление термоядерных реакций в земных условиях создаст огромные возможности для получения энергии. Например, при использовании дейтерия, содержащегося в одном литре воды, в реакции термоядерного синтеза выделится столько же энергии, сколько выделится при сгорании примерно 350 литров бензина. Но если термоядерная реакция будет протекать самопроизвольно, то произойдет колоссальный взрыв, так как выделяющаяся при этом энергия очень велика.

Условия, близкие к тем, что реализуются в недрах Солнца, были осуществлены в водородной бомбе. Там происходит самоподдерживающаяся термоядерная реакция взрывного характера. Взрывчатым веществом является смесь дейтерия 1 2 D с тритием 1 3 Т. Высокая температура, необходимая для протекания реакции, получается за счет взрыва обычной атомной бомбы, помещенной внутри термоядерной.

Основные проблемы, связанные с осуществлением термоядерных реакций

В термоядерном реакторе реакция синтеза должна происходить медленно, должна быть возможность управлять ею. Изучение реакций, происходящих в высокотемпературной дейтериевой плазме, является теоретической основой получения искусственных управляемых термоядерных реакций. Основной трудностью является поддержание условий, необходимых для получения самоподдерживающейся термоядерной реакции. Для такой реакции необходимо, чтобы скорость выделения энергии в системе, где происходит реакция, была не меньше, чем скорость отвода энергии от системы. При температурах порядка 10 8 К термоядерные реакции в дейтериевой плазме обладают заметной интенсивностью и сопровождаются выделением большой энергии. В единице объема плазмы при соединении ядер дейтерия выделяется мощность 3кВт/м 3 . При температурах порядка 10 6 К мощность составляет всего лишь 10 -17 Вт/м 3 .

А как практически использовать выделяющуюся энергию? При синтезе дейтерия с тритерием основная часть выделившейся энергии (около 80%) проявляется в форме кинетической энергии нейтронов. Если вне магнитной ловушки замедлить эти нейтроны, то можно получить теплоту, а затем преобразовать ее в электрическую энергию. При реакции синтеза в дейтерии примерно 2/3 высвобожденной энергии несут заряженные частицы – продукты реакции и только 1/3 энергии – нейтроны. А кинетическую энергию заряженных частиц можно непосредственно преобразовать в электрическую энергию.

Какие же условия нужны для осуществления реакций синтеза? В этих реакциях ядра должны соединиться друг с другом. Но каждое ядро заряжено положительно, значит, между ними действуют силы отталкивания, которые определяются законом Кулона:

, r 2 Z 1 Z 2 e 2 F~

Где Z 1 e – заряд одного ядра, Z 2 e – заряд второго ядра, а e – модуль заряда электрона. Для того, чтобы соединится друг с другом, ядра должны преодолеть кулоновские силы отталкивания. Эти силы становятся очень большими, когда ядра сближаются. Наименьшими силы отталкивания будут в случае ядер водорода, имеющих наименьший заряд (Z=1). Чтобы преодолеть кулоновские силы отталкивания и соединиться ядра должны обладать кинетической энергией примерно 0,01 – 0,1 МэВ. Такой энергии соответствует температура порядка 10 8 – 10 9 К. А это больше, чем температура даже в недрах Солнца! Из-за того, что реакции синтеза происходят при очень высоких температурах, их называют термоядерными.

Термоядерные реакции могут быть источником энергии, если выделение энергии будет превосходить затраты. Тогда, как говорят, процесс синтеза будет самоподдерживающимся.

Температуру, при которой это происходит, называют температурой зажигания или критической температурой. Для реакции DT (дейтерий – тритерий) температура зажигания составляет около 45 млн. К, а для реакции DD (дейтерий – дейтерий) около 400 млн. К. Таким образом для протекания реакций DT нужны гораздо меньшие температуры, чем для реакций DD. Поэтому исследователи плазмы отдают предпочтение реакциям DT, хотя тритий в природе не встречается, а для его воспроизводства в термоядерном реакторе надо создавать особые условия.

Как же удержать плазму в какой-то установке – термоядерном реакторе – и нагреть ее так, чтобы начался процесс синтеза? Потери энергии в высокотемпературной плазме связаны главным образом с уходом тепла через стенки устройства. Плазму необходимо изолировать то стенок. С этой целью применяются сильные магнитные поля (магнитная термоизоляция плазмы). Если через столб плазмы в направлении его оси пропустить большой электрический ток, то в магнитном поле этого тока возникают силы, которые сжимают плазму в плазменный шнур, оторванный от стенок. Удержание плазмы в отрыве от стенок и борьба с различными неустойчивостями плазмы являются сложнейшими задачами, решение которых должно привести к практическому осуществлению управляемых термоядерных реакций.

Ясно, что, чем выше концентрация частиц, тем чаще они сталкиваются друг с другом. Поэтому может показаться, что для осуществления термоядерных реакций надо использовать плазму большой концентрации частиц. Однако если концентрация частиц будет такой, как концентрация молекул в газах при нормальных условиях (10 25 м -3 ), то при термоядерных температурах давление в плазме было бы колоссальным – порядка 10 12 Па. Такое давление не сможет выдержать ни одно техническое устройство! Чтобы давление составляло величину порядка 10 6 Па и соответствовало прочности материала, термоядерная плазма должна быть сильно разреженной (концентрация частиц должна быть порядка 10 21 м -3 ) .Однако в разреженной плазме соударение частиц друг с другом происходят реже. Чтобы в этих условиях могла поддерживаться термоядерная реакция, надо увеличить время пребывания частиц в реакторе. В связи с этим удержательная способность ловушки характеризуется произведением концентрации n частиц на время t их удержания в ловушке.

Оказывается, что для реакции DD

nt>10 22 м -3. с,

а для реакции DT

nt>10 20 м -3. с.

Отсюда видно, что для реакции DD при n=10 21 м -3 время удержания должно быть больше 10 с; если же n=10 24 м -3 , то достаточно, чтобы время удержания превышало 0,1 с.

Для смеси дейтерия с тритием при n=10 21 м -3 термоядерная реакция синтеза может начаться, если время удержания плазмы больше 0,1 с, а при n=10 24 м -3 достаточно, чтобы это время было больше 10 -4 с. Таким образом, при одинаковых условиях необходимое время удержания реакции DT может быть значительно меньше, чем в реакциях DD. В этом смысле реакцию DT легче осуществить, чем реакцию DD.

Осуществление управляемых термоядерных реакций в установках типа «ТОКАМАК»

Физики настойчиво ищут путей овладения энергией термоядерных реакций синтеза. Уже сейчас такие реакции реализуются в различных термоядерных установках, но выделяющаяся в них энергия еще не оправдывает затраты средств и труда. Другими словами, существующие термоядерные реакторы пока экономически не выгодны. Среди различных программ термоядерных исследований в настоящее время наиболее перспективной считается программа, основанная на реакторах типа токамак. Первые исследования кольцевых электрических разрядов в сильном продольном магнитном поле были начаты в 1955 г. под руководством советских физиков И.Н.Головина и Н.А.Явлинского. Построенная ими тороидальная установка была довольно крупной даже по современным масштабам: она была рассчитана на разряды с силой тока до 250 кА. И.Н.Головин предложил для таких установок название «токамак» (токовая камера, магнитная катушка). Это название используется физиками всего мира.

До 1968 г. исследования на токамаках развивались главным образом в Советском Союзе. Сейчас в мире более 50 установок типа токамак.

На рисунке 1 изображена типичная конструкция токамака. Продольное магнитное поле в нем создается катушками с током, охватывающими тороидальную камеру. Кольцевой ток в плазме возбуждается в камере как во вторичной обмотке трансформатора при разрядке батареи конденсаторов через первичную обмотку 2. Плазменный шнур заключен в тороидальную камеру – лайнер 4, изготовленный из тонкой нержавеющей стали толщиной в несколько миллиметров. Лайнер окружен медным кожухом 5 толщиной в несколько сантиметров. Назначение кожуха – стабилизировать медленные длинноволновые изгибы плазменного шнура.

Эксперименты на токамаках позволили установить, что время удержания плазмы (величина, характеризующая длительность сохранения плазмой необходимой высокой температуры) пропорциональна площади сечения плазменного шнура и индукции продольного магнитного поля. Магнитная индукция может быть весьма большой при использовании сверхпроводящих материалов. Другая возможность повышения времени удержания плазмы состоит в увеличении поперечного сечения плазменного шнура. Это значит, что необходимо увеличить размеры токамаков. Летом в 1975 году в Институте атомной энергии имени И.В. Курчатова вступил в строй самый крупный токамак – Т-10. В нем получены следующие результаты: температура ионов в центре шнура 0,6 – 0,8 кЭв, средняя концентрация частиц 8 . 10 19 м -3 , энергетическое время удержания плазмы 40 – 60 мс, основной параметр удержания nt~(2,4-7,2) . 10 18 м -3. с.

Более крупными установками являются так называемые демонстрационные токамаки, которые вступили в строй до 1985 года. Токамаком такого типа является Т-20. Он имеет весьма внушительные размеры: большой радиус тора равен 5 метрам, радиус тороидальной камеры – 2 метра, объем плазмы – около 400 кубических метров. Целью сооружения таких установок является не только проведение физических экспериментов и исследований. Но и разработка различных технологических аспектов проблемы – выбор материалов, изучение изменения их свойств при повышенных тепловых и радиационных воздействиях и т.д. Установка Т-20 предназначена для получения реакции смеси DT. В этой установке предусматривается надежная защита от мощного рентгеновского излучения, потока быстрых ионов и нейтронов. Предполагается использовать энергию потока быстрых нейтронов (10 17 м -2. с), которые в специальной защитной оболочке (бланкете) будет замедляться, и отдавать свою энергию теплоносителю. Кроме того, если в бланкете будет содержаться изотоп лития 3 6 Li, то он под действием нейтронов будет превращаться в тритий, который в природе не существует.

Токамаки следующего поколения будут представлять собой уже опытно-промышленные термоядерные электростанции, и они в конечном счете должны будут производить электроэнергию. Предполагается, что они будут реакторами «гибридного типа», в которых бланкет будет содержать делящийся материал (уран). Под действием быстрых нейтронов в уране будет происходить реакция деления, что повысит общий энергетический выход установки.

Итак, токамаки представляют собой устройства, в которых плазма нагревается до высоких температур и удерживается. Как осуществляется в токамаках нагрев плазмы? Прежде всего, плазма в токамаке нагревается вследствие протекания электрического тока это, как говорят, омический нагрев плазмы. Но при очень высоких температурах сопротивление плазмы сильно падает и омический нагрев становится неэффективным, поэтому сейчас исследуются различные методы дополнительного повышения температуры плазмы, такие как инжекция в плазму быстрых нейтральных частиц и высокочастотный нагрев.

Нейтральные частицы не испытывают никакого действия со стороны магнитного поля, удерживающего плазму, и поэтому могут быть легко «впрыснуты», инжектированы в плазму. Если эти частицы обладают большой энергией, то, попав в плазму, они ионизуются и при столкновениях с частицами плазмы передают им часть своей энергии, и плазма нагревается. Сейчас достаточно хорошо разработаны методы получения потоков нейтральных частиц (атомов) с большой энергией. С этой целью с помощью специальных устройств – ускорителей – заряженным частицам сообщается очень большая энергия. Затем этот поток заряженных частиц специальными методами нейтрализуют. В результате получается поток высокоэнергетических нейтральных частиц.

Высокочастотный нагрев плазмы может осуществляться с помощью внешнего высокочастотного электромагнитного поля, частота которого совпадает с одной из собственных частот плазмы (условия резонанса). При выполнении этого условия частицы плазмы сильно взаимодействуют с электромагнитным полем, и происходит перекачка энергии поля в энергию плазмы (плазма нагревается).

Хотя программа токамаков считается наиболее перспективной для термоядерного синтеза, физики не прекращают исследований по другим направлениям. Так, последние достижения по удержанию плазмы в прямых системах с магнитными пробками вселяют оптимистические надежды на создание на основе таких систем энергетического термоядерного реактора.

Для устойчивого удержания плазмы с помощью описанных устройств в ловушке создаются условия, при которых магнитное поле нарастает от центра ловушки к ее периферии. Нагрев плазмы осуществляется с помощью инжекции нейтральных атомов.

Как в токамаках, так и в пробкотронах для удержания плазмы необходимо очень сильное магнитное поле. Однако существуют направления решения проблемы термоядерного синтеза, при реализации которых отпадает необходимость создания сильных магнитных полей. Это так называемые лазерный синтез и синтез с помощью релятивистских электронных пучков. Суть этих решений состоит в том, что на твердую «мишень», состоящую из замороженной смеси DT, со всех сторон направляют либо мощное лазерное излучение, либо пучки релятивистских электронов. В результате мишень должна сильно нагреваться, ионизоваться и в ней взрывным образом должна произойти реакция синтеза. Однако практическое воплощение этих идей сопряжено со значительными трудностями, в частности из-за отсутствия лазеров, обладающих необходимой мощностью. Тем не менее, в настоящее время интенсивно разрабатываются проекты термоядерного реактора на основе этих направлений.

К решению проблемы могут привести различные проекты. Ученые надеются, что, в конце концов, удастся осуществить управляемые реакции термоядерного синтеза и тогда человечество получит источник энергии на многие миллионы лет.

Проект ИТЭР

Уже в самом начале проектирования токамаков нового поколения стало ясно, насколько они сложны и дороги. Возникла естественная мысль о международном сотрудничестве. Так появился проект ИТЭР (Интернациональный Термоядерный Энергетический Реактор), в разработке которого участвуют объединение «Евратом», СССР, США и Япония. Сверхпроводящий соленоид ИТЭРа на основе нитрата олова должен охлаждаться жидким гелием при температуре 4 К или жидким водородом при 20 К. Увы, не сбылись мечты о более «теплом» соленоиде из сверхпроводящей керамики, который мог бы работать при температуре жидкого азота (73 К). Расчеты показали, что он только ухудшит систему, поскольку, кроме эффекта сверхпроводимости, свой вклад будет вносить и проводимость его медной подложки.

В соленоиде ИТЭРа запасается огромная энергия - 44 ГДж, что эквивалентно заряду около 5 т тротила. В целом электромагнитная система этого реактора по мощности и сложности на два порядка превзойдет самые крупные действующие установки. По электрической мощности он будет эквивалентен Днепрогэсу (около 3 ГВт), а его общая масса составит примерно 30 тыс. т.

Долговечность реактора определяет прежде всего первая стенка тороидальной камеры, находящаяся в самых напряженных условиях. Кроме термических нагрузок, она должна пропускать и частично поглощать мощный поток нейтронов. По расчетам, стенка из наиболее подходящих сталей сможет выдержать не более 5 – 6 лет. Таким образом, при заданной длительности работы ИТЭРа – 30 лет – стенку потребуется менять 5 – 6 раз. Для этого реактор придется почти полностью разбирать с помощью сложных и дорогих дистанционных манипуляторов - ведь только они смогут проникнуть в радиоактивную зону.

Такова цена даже опытного термоядерного реактора - чего же потребует промышленный?

Современные исследования плазмы и термоядерных реакций

Основным направлением в исследованиях по физике плазмы и управляемому термоядерному синтезу, проводимых в Институте ядерного синтеза, по-прежнему остается активное участие в разработке технического проекта международного экспериментального термоядерного реактора ИТЭР.

Работы эти получили новый импульс после подписания 19 сентября 1996 года Председателем правительства РФ В.С. Черномырдиным Постановления об утверждении федеральной целевой научно-технической программы "Международный термоядерный реактор ИТЭР и научно-исследовательские и опытно-конструкторские работы в его поддержку на 1996-1998 годы". В Постановлении подтверждены обязательства по проекту, принятые на себя Россией, и рассмотрены вопросы их ресурсного обеспечения. Группа сотрудников откомандирована для работы в центральных проектных коллективах ИТЭР в США, Японии и Германии. В рамках "домашнего" задания в Институте ведутся экспериментальные и расчетно-теоретические работы по моделированию элементов конструкций бланкета ИТЭР, разработке научной базы и технического обеспечения систем нагрева плазмы и неиндукционного поддержания тока с помощью электронно-циклотронных волн и нейтральной инжекции.

В 1996 году в ИЯС проведены стендовые испытания прототипов квазистационарных гиротронов, разрабатываемых в России для систем ЭЦР-предыонизации и нагрева плазмы ИТЭР. Ведутся макетные испытания новых методик диагностики плазмы - зондирования плазмы пучком тяжелых ионов (совместно с Харьковским физико-техническим институтом) и рефлектометрии. Изучаются проблемы обеспечения безопасности термоядерных энергетических систем и связанные с ними вопросы формирования нормативной базы. Выполнен цикл модельных расчетов механической реакции конструкций бланкета реактора на динамические процессы в плазме, такие, как срывы тока, смещения плазменного шнура и т.п. В феврале 1996 года в Москве было проведено тематическое совещание по диагностическому обеспечению ИТЭР, в котором приняли участие представители всех сторон проекта.

Уже 30 лет (с 1973 года) активно ведутся совместные работы в рамках российско (советско) - американского сотрудничества по УТС с магнитным удержанием. И в сегодняшнее трудное для российской науки время пока еще удается сохранять достигнутый в прошедшие годы научный уровень и спектр совместных исследований, ориентированных в первую очередь на физическое и научно-инженерное обеспечение проекта ИТЭР. В 1996 году специалисты Института продолжали участвовать в дейтерий-тритиевых экспериментах на токамаке TFTR в Принстонской лаборатории физики плазмы. В ходе этих экспериментов, наряду с существенными успехами по изучению механизма самонагрева плазмы образующимися в термоядерной реакции α-частицами нашла практическое подтверждение идея улучшения удержания высокотемпературной плазмы в токамаках за счет создания в центральной зоне магнитной конфигурации с так называемым обратным широм. Продолжены совместно с отделом физики плазмы компании " GeneralAtomic" взаимодополняющие исследования неиндукционного поддержания тока в плазме с помощью СВЧ-волн в диапазоне электронного циклотронного резонанса на частоте 110-140 МГц. При этом осуществлялся взаимный обмен уникальной диагностической аппаратурой. Подготовлен эксперимент по дистанционной on-line обработке в ИЯС результатов измерений на токамаке DIII-D в Сан-Диего, для чего в Москву будет передана рабочая станция «Alfa». С участием Института Ядерного Синтеза завершается создание на DIII-D мощного гиротронного комплекса, ориентированного на квазистационарный режим работы. Интенсивно ведутся совместные расчетно-теоретические работы по изучению процессов срыва тока в токамаках (одна из основных физических проблем ИТЭР на сегодняшний день) и моделированию процессов переноса с участием теоретиков Принстонской лаборатории, Техасского университета и " GeneralAtomic". Продолжается сотрудничество с Аргоннской национальной лабораторией по проблемам взаимодействия плазма-стенка и разработке перспективных малоактивируемых материалов для энергетических термоядерных реакторов.

В рамках российско-германской программы по мирному использованию атомной энергии ведется многоплановое сотрудничество с Институтом физики плазмы им. Макса Планка, Ядерным исследовательским центром в Юлихе, Штутгартским и Дрезденским техническими университетами. Сотрудники Института участвовали в разработке, а теперь и в эксплуатации гиротронных комплексов стелларатора Wendelstein W7-As и токамака ASDEX-U в Институте М. Планка. Совместно разработан численный код для обработки результатов измерений спектра энергии частиц перезарядки применительно к токамакам Т-15 и ADEX-U. Продолжены работы по анализу и систематизации опыта эксплуатации инженерных систем токамаков TEXTOR и Т-15. Для совместных экспериментов на TEXTOR подготавливается рефлектометрическая система диагностики плазмы. Существенная информация накоплена в рамках долгосрочной совместной работы с Дрезденским техническим университетом по выбору и анализу малоактивируемых материалов, перспективных для конструкций будущих термоядерных реакторов. Сотрудничество со Штутгартским университетом ориентировано на изучение технологических проблем повышения надежности гиротронов большой мощности (совместно с Институтом прикладной физики РАН РФ). Вместе с Берлинским филиалом Института М. Планка проводятся работы по совершенствованию методики использования диагностической станции WASA-2 для поверхностного анализа материалов, подвергающихся воздействию высокотемпературной плазмы. Станция была разработана специально для токамака Т-15.

По двум линиям ведется сотрудничество с Францией. Совместные экспериментальные исследования по физике сильноточных ионных источников, в частности источников отрицательных ионов водорода, и по плазменным движителям для космических аппаратов проводятся с отделом физики плазмы Ecole Polytechnique. Продолжаются совместные работы по изучению процессов скоростного сжатия проводящих цилиндрических оболочек сверхсильными магнитными полями с исследовательским центром De-Gramat. В Институте разработана и сооружается установка для получения импульсных магнитных полей субмегагауссного диапазона (на контрактной основе).

Проводятся консультации специалистов Швейцарского центра исследований в области физики плазмы Suisse Ecole Poytechnique по использованию метода электронно-циклотронного нагрева плазмы. Согласована долгосрочная программа сотрудничества по УТС с Ядерным центром Фраскати (Италия).

"Зонтиковое" соглашение о взаимном научном обмене подписано с Японским национальным центром по плазменным исследованиям (Нагойя). Выполнен ряд совместных теоретических и расчетно-теоретических исследований по механизмам переносов в плазме токамаков и вопросам удержания в стеллараторах (применительно к сооружаемому в Японии крупному гелиотрону LHD).

В Институте физики плазмы Китайской академии наук (г.Хефей) начаты полномасштабные эксперименты на сверхпроводящем токамаке НТ-7, созданном на основе нашего токамака Т-7. На контрактной основе в Институте для НТ-7 готовится несколько диагностических систем.

Специалисты Института неоднократно приглашались компанией "Самсунг" для консультирования работ по проектированию крупного сверхпроводящего токамака START, который Южная Корея планировала соорудить к 1999 году. Это крупнейшая термоядерная установка в мире к этому времени.

Институт является головной организацией по шести проектам Международного научно-технического центра ISTC (тритиевый цикл термоядерного реактора, технологическое применение ионной имплантации, плазменная диагностика, лидарная система экологического контроля атмосферы, система рекуперации для комплексов инжекционного нагрева плазмы в термоядерных системах, источники низкотемпературной плазмы для технологических целей).

Заключение

Идея создания термоядерного реактора зародилась в 1950-х годах. Тогда от нее было решено отказаться, поскольку ученые были не в состоянии решить множество технических проблем. Прошло несколько десятилетий прежде, чем ученым удалось «заставить» реактор произвести хоть сколько-нибудь термоядерной энергии.

В ходе написания курсовой работы мною были подняты вопросы по созданию и основным проблемам термоядерного синтеза, и как оказалось, создание установок для получения термоядерного синтеза – это и есть проблема, но не основная. К основным проблемам можно отнести удержание плазмы в реакторе и создание оптимальных условий: произведением концентрации n частиц на время t их удержания в ловушке и созданиям температуры, приблизительно равной температуре в центре солнца.

Несмотря на все сложности создания управляемого термоядерного синтеза, ученые не отчаиваются и ищут решения проблем, т.к. при удачном осуществлении реакции синтеза будет получен колоссальный источник энергии, во многом превосходящий любую созданную электростанцию. Запасы топлива для таких электростанций практически неисчерпаемы – дейтерий и тритий легко добываются из морской воды. Килограмм этих изотопов может выделить столько же энергии, сколько 10 млн кг органического топлива.

Будущее не сможет существовать без развития термоядерного синтеза, человечеству необходима электроэнергия, а в современных условиях нам не хватит наших запасов энергии, при получении ее из атомных и электростанций.

Литература

1. Милантьев В.П., Темко С.В. Физика плазмы: кн. для внеклас. чтения. VIII – X кл. – 2-е изд., доп. – М.: Просвещение, 1983. 160 с., ил. – (Мир знаний).

2. Свирский М.С. Электронная теория вещества: учеб. пособие для студентов физ. - мат. фак. пед. ин-тов – М.: Просвещение, 1980. – 288с., ил.

3. Цитович В.Н. Электрические свойства плазмы. М., «Знание», 1973.

4. Техника молодежи // №2/1991

5. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике. – М.: Наука. – Гл. ред. физ.- мат. лит., 1989. – 576 с., ил.

Область физики плазмы расцвела из желания закупорить звезду в бутылке. За последние несколько десятилетий эта область разрослась в бесчисленных направлениях, от астрофизики до космической погоды и нанотехнологий.

По мере того, как росло наше общее понимание плазмы, росли и наши возможности поддержания условий синтеза в течение больше чем секунды. В начале этого года новый сверхпроводниковый реактор синтеза в Китае смог удержать плазму температурой в 50 миллионов градусов по Цельсию в течение рекордных 102 секунд. Wendelstein X-7 Stellarator, который заработал в Германии впервые прошлой осенью, как ожидается, сможет побить этот рекорд и удержать плазму до 30 минут за раз.

Недавнее обновление NSTX-U выглядит скромным в сравнении с этими монстрами: теперь эксперимент может удерживать плазму в течение пяти секунд вместо одной. Но и это тоже является важной вехой.

«Создание термоядерной плазмы, которая живет всего пять секунд, может показаться не очень длительным процессом, но в физике плазмы пять секунд можно сравнить с ее физикой в стабильном состоянии», - говорит Майерс, ссылаясь на условия, при которых плазма стабильна. Конечная цель заключается в достижении стабильного состояния «горящей плазмы», которая может проводить синтез сама по себе за счет небольшого ввода энергии извне. Ни один эксперимент пока такого не добился.

NSTX-U позволит принстонским исследователям заполнить некоторые пробелы между тем, что известно из физики плазмы сейчас, и тем, что будет необходимо для создания опытно-промышленной установки, способной достичь устойчивого состояния горения и генерации чистой электроэнергии.

С одной стороны, чтобы найти лучшие материалы для удержания, нам нужно лучше понять, что происходит между термоядерной плазмой и стенками реактора. В Принстоне изучают возможность замены стенок своего реактора (из угольного графита) на «стенку» из жидкого лития с целью снижения долгосрочной коррозии.

Ко всему прочему, ученые полагают, что если синтез поможет в борьбе с глобальным потеплением, им нужно поторапливаться. NSTX-U поможет физикам решить, стоит ли продолжать развивать дизайн сферического токамака. Большинство реакторов типа токамак в меньшей степени похожи на яблоко по форме и в большей - на пончик, бублик, тор. Необычная форма сферического тора позволяет более эффективно использовать магнитное поле своих катушек.

«В длительной перспективе мы хотели бы выяснить, как оптимизировать конфигурацию одной из этих машин, - говорит Мартин Гринвальд, замдиректора Центра наук о плазме и синтезе в . - Для этого вам нужно знать, как производительность машины зависит от того, что поддается вашему контролю, вроде формы».

Майерс ненавидит оценивать, насколько мы далеки от коммерчески возможной термоядерной энергии, и его можно понять. В конце концов, десятки лет неизбывного оптимизма нанесли серьезный вред репутации этой области и укрепили мысли о том, что синтез - это несбыточная мечта. Со всеми последствиями для финансирования.

Для программы синтеза MIT стало серьезным ударом то, что федералы предоставили поддержку токамака Alcator C-Mid, который производит одно из мощнейших магнитных полей и демонстрирует синтезируемую плазму при высочайшем давлении. Большинство ожидаемых исследований NSTX-U будут зависеть от дальнейшей поддержки на федеральном уровне, которая, по словам Майерса, оказывается «через год».

Всем приходится осторожно тратить доллары, выделяемые на исследования, а некоторые программы синтеза уже сожрали невероятные суммы. Взять, например, ИТЭР, огромный сверхпроводящий реактор синтеза, который в настоящее время строится во Франции. Когда в 2005 году началось международной сотрудничество, оно было заявлено как проект на 5 миллиардов долларов и 10 лет. После нескольких лет неудач ценник вырос до 40 миллиардов долларов. По самым оптимистичным оценкам, объект будет завершен к 2030 году.

И там где ИТЭР, похоже, будет разбухать как опухоль, пока не исчерпает ресурсы и не убьет хозяина, урезанная программа синтеза в MIT показывает, как можно сделать все с гораздо меньшим бюджетом. Прошлым летом команда аспирантов MIT представила планы ARC, термоядерного реактора с низким уровнем затрат, который будет использовать новые высокотемпературные сверхпроводящие материалы для генерации такого же объема энергии, как и ИТЭР, только с гораздо меньшим устройством.

«Проблема синтеза в том, чтобы найти технический путь, который сделает его экономически привлекательным - это-то мы и планируем сделать в ближайшее время, - говорит Гринвальд, отмечая, что концепция ARC в настоящее время проводится в рамках Energy Initiative в MIT. - Мы считаем, что если синтез будет иметь значение для глобального потепления, нам нужно двигаться быстрее».

«Синтез обещает быть основным источником энергии - это, по сути, наша конечная цель», - говорит Роберт Рознер, плазмофизик из Университета Чикаго и соучредитель Института энергетической политики при нем. «В то же время есть важный вопрос: сколько мы готовы потратить прямо сейчас. Если мы снизим финансирование до той точки, когда следующее поколение умных детишек вообще не захочет этим заниматься, мы можем вообще выйти из этого дела».