Механическая работа. Мощность. Современные проблемы науки и образования

Нам осталось рассмотреть работу третьей механической силы - силы трения скольжения. В земных условиях сила трения в той пли иной мере проявляется при всех движениях тел.

От силы тяжести и силы упругости сила трения скольжения отличается тем, что она от координат не зависит и возникает всегда при относительном движении соприкасающихся тел.

Рассмотрим работу силы трения при движении тела относительно неподвижной поверхности, с которой оно соприкасается. В этсм случае сила трения направлена против движения тела. Ясно, что по отношению к направлению перемещения такого тела сила трения не может быть направлена под каким-нибудь другим углем, кроме угла 180°. Поэтому работа силы трения отрицательна. Вычислять работу силы трения нужно по формуле

где - сила трения, - длина пути, на протяжении которого действует сила трения

Когда на тело действует сила тяжести или сила упругости, может двигаться и в направлении силы, и против направления силы. В первом случае работа силы положительна, во втором - отрицательна. При движении тела «туда и обратно» полная работа равна нулю.

О работе силы трения этого сказать нельзя. Работа силы трения отрицательна и при движении «туда», движении обратно». Поэтому работа силы трения после возвращения тела в исходную точку (при движении по замкнутому пути) неравна нулю.

Задача. Вычислите работу силы трения при торможении поезда массой 1200 т до полной остановки, если скорость поезда в момент выключения двигателя была 72 км/ч. Решение. Воспользуемся формулой

Здесь - масса поезда, равная кг, - конечная скорость поезда, равная нулю, и - его начальная скорость, равная 72 км/ч = 20 м/сек. Подставив эти значения, получим:

Упражнение 51

1. На тело действует сила трения. Может ли работа этой силы равняться нулю?

2. Если тело, на которое действует сила трения, пройдя некоторую траекторию, вернется в исходную точку, будет ли работа сипы трения равна нулю?

3. Как изменяется кинетическая энергия тела при работе силы трения?

4. Сани массой 60 кг, скатившись с горы, проехали по горизонтальному участку дороги 20 м. Найдите работу силы трения на этом участке, если коэффициент трения полозьев саней о снег 0,02.

5. К точильному камню радиусом 20 см прижимают затачиваемую деталь с силой 20 н. Определите, какая работа совершается двигателем за 2 мин, если точильный камень делает 180 об мин, а коэффициент трения детали о камень равен 0,3.

6. Шофер автомобиля выключает двигатель и начинает тормозить в 20 м от светофора. Считая силу трения равной 4 000 к, найдите, при какой наибольшей скорости автомобиля он успеет остановиться перед светофором, если масса автомобиля равна 1,6 т?

Инструкция

Пример задачи 3: брусок массой 1 кг соскользнул с вершины наклонной плоскости за 5 секунд, путь 10 метров. Определите силу трения, если угол наклона плоскости 45о. Рассмотрите также случай, когда на брусок воздействовала дополнительная сила 2 Н, приложенная вдоль угла наклона по направлению движения.

Найдите ускорение тела аналогично примерам 1 и 2: а = 2*10/5^2 = 0,8 м/с2. Вычислите силу трения в первом случае: Fтр = 1*9,8*sin(45о)-1*0,8 = 7,53 Н. Определите силу трения во втором случае: Fтр = 1*9,8*sin(45о)+2-1*0,8= 9,53 Н.

Случай 6. Тело двигается по наклонной поверхности равномерно. Значит, по второму закону Ньютона система находится в равновесии. Если скольжение самопроизвольное, движение тела подчиняется уравнению: mg*sinα = Fтр.

Если же к телу приложена дополнительная сила (F), препятствующая равноускоренному перемещению, выражение для движения имеет вид: mg*sinα–Fтр-F = 0. Отсюда найдите силу трения: Fтр = mg*sinα-F.

Источники:

  • скольжение формула

По механическому закону Кулона сила скольжения равна F = kN, где k - коэффициент трения, а N - сила реакции опоры. Так как сила реакции опоры направлена строго вертикально, то N = Fтяж = mg, где m - масса тела, g - ускорение свободного падения. Это условие следует из неподвижности тела относительно вертикального направления.

Таким образом, коэффициент трения можно найти по формуле k = Fтр/N = Fтр/mg. Для этого необходимо знать силу . Если тело равноускоренно, то силу трения можно найти, зная ускорение a. Пусть на тело действует движущая сила F и направленная противоположно ей Fтр. Тогда по второму закону Ньютона (F-Fтр)/m = a. Выражая отсюда Fтр и подставляя в формулу для коэффициента трения, получим: k = (F-ma)/N.

Из этих формул видно, что коэффициент трения является безразмерной величиной.

Рассмотрим более общий случай, когда с наклонной плоскости, например, с закрепленного блока. Такие задачи очень часто встречаются в школьном курсе в разделе «Механика».

Пусть угол наклона плоскости равен φ. Сила реакции опоры N будет направлена перпендикулярно наклонной плоскости. На тело также будут действовать сила тяжести и сила трения. Оси направим вдоль и перпендикулярно наклонной плоскости.

Согласно второму закону Ньютона можно записать уравнения тела: N = mg*cosφ, mg*sinφ-Fтр = mg*sinφ-kN = ma.

Подставив первое уравнение во второе и сократив массу m, получим: g*sinφ-kg*cosφ = a. Отсюда, k = (g*sinφ-a)/(g*cosφ).

Рассмотрим важный частный случая соскальзывания по наклонной плоскости, когда a = 0, то есть тело движется равномерно. Тогда уравнение движения имеет вид g*sinφ-kg*cosφ = 0. Отсюда, k = tgφ, то есть для определения коэффициента скольжения достаточно знать тангенс угла наклона плоскости.

Видео по теме

Обратите внимание

Следует не путать закон Кулона в механике с законом Кулона в электростатике!

При относительном движении двух тел между ними возникает трение. Оно также может возникнуть при движении в газообразной или жидкой среде. Трение может как мешать, так и способствовать нормальному движению. В результате этого явления на взаимодействующие тела действует сила .

Инструкция

Наиболее общий случай рассматривает силу , когда одно из тел закреплено и покоится, а другое скользит по его поверхности. Со стороны тела, по которому скользит движущееся тело, на последнее действует сила реакции опоры, направленная перпендикулярно плоскости скольжения. Эта сила буквой N.Тело может также и покоится относительно закрепленного тела. Тогда сила трения , действующая на него Fтртрения . Он зависит от материалов трущихся поверхностей, степени их отшлифовки и ряда других факторов.

В случае движения тела относительно поверхности закрепленного тела сила трения скольжения становится равна произведения коэффициента трения на силу реакции опоры: Fтр = ?N.

Пусть теперь на тело действует постоянная сила F>Fтр = ?N, параллельная поверхности соприкасающихся тел. При скольжении тела, результирующая составляющая силы в горизонтальном направлении будет равна F-Fтр. Тогда по второму закону Ньютона, ускорение тела будет связано с результирующей силой по формуле: a = (F-Fтр)/m. Отсюда, Fтр = F-ma. Ускорение тела можно найти из кинематических соображений.

Часто рассматриваемый частный случай силы трения при соскальзывании тела с закрепленной плоскости. Пусть? - угол наклона плоскости и пусть тело соскальзывает равномерно, то есть без . Тогда уравнения движения тела будут выглядеть так: N = mg*cos?, mg*sin? = Fтр = ?N. Тогда из первого уравнения движения силу трения можно выразить как Fтр = ?mg*cos?.Если тело движется по наклонной плоскости с a, то второе уравнение будет иметь вид: mg*sin?-Fтр = ma. Тогда Fтр = mg*sin?-ma.

Видео по теме

Если сила, направленная параллельно поверхности, на которой стоит тело, превышает силу трения покоя, то начнется движение. Оно будет продолжаться до тех пор, пока движущая сила будет превышать силу трения скольжения, зависящую от коэффициента трения. Рассчитать этот коэффициент можно самостоятельно.

Вам понадобится

  • Динамометр, весы, транспортир или угломер

Инструкция

Найдите массу тела в килограммах и установите его на ровную поверхность. Присоедините к нему динамометр, и начинайте двигать тело. Делайте это таким образом, чтобы показатели динамометра стабилизировались, поддерживая постоянную скорость . В этом случае сила тяги, измеренная динамометром, будет равна с одной стороны силе тяги, которую показывает динамометр, а с другой стороны силе , умноженной на скольжения.

Сделанные измерения позволят найти данный коэффициент из уравнения. Для этого поделите силу тяги на массу тела и число 9,81 (ускорение свободного падения) μ=F/(m g). Полученный коэффициент будет один и тот же для всех поверхностей такого же типа, как и те на которых производилось измерение. Например, если тело из двигалось по деревянной доске, то этот результат будет справедлив для всех деревянных тел, двигающихся скольжением по дереву, с учетом качества его обработки (если поверхности шершавые, значение коэффициента трения скольжения измениться).

Можно измерить коэффициент трения скольжения и другим способом. Для этого установите тело на плоскости, которая может менять свой угол относительно горизонта. Это может быть обыкновенная дощечка. Затем начинайте аккуратно ее за один край. В тот момент, когда тело придет в движение, скатываясь в плоскости как сани с горки, найдите угол ее уклона относительно горизонта. Важно, чтобы тело при этом не двигалось с ускорением. В этом случае, измеренный угол будет предельно малым, при котором тело начнет двигаться под . Коэффициент трения скольжения будет равен тангенсу этого угла μ=tg(α).

Видео по теме

Трение – процесс взаимодействия двух тел, вызывающий замедление движения при смещении друг относительно друга. Найти силу трения – значит определить величину воздействия, направленную в сторону, противоположную движению, по причине которой тело теряет энергию и, в конце концов, останавливается.

Инструкция

Сила трения – векторная величина, которая зависит от многих факторов: тел друг на друга, материалы, из которых они были изготовлены, скорость . Площадь поверхности при этом значения не имеет, поскольку чем она больше, тем больше взаимное давление (сила опоры N), которая уже участвует в нахождении силы трения .

Коэффициент трения качения – это, как правило, известная величина для распространенных материалов. Например, для по железу он равен 0,51 мм, для железа по дереву – 5,6, дерева по дереву – 0,8-1,5 и т.д. Найти его можно по формуле соотношения момента трения к прижимающей силе.

Сила трения покоя появляется при минимальных перемещениях тел или деформации. Эта сила всегда присутствует при сухом скольжении. Максимальное ее значение равно μ N. Существует также внутреннее трение, внутри одного тела между его слоями или .

Обратите внимание

Равномерное движение тела характеризуется равновесием между внешней силой и силой трения.

В школьных задачах по физике на определение силы трения скольжения в основном рассматривается прямолинейное равномерное или прямолинейное равноускоренное движение тела. Посмотрите, как можно найти силу трения в разных случаях зависимости от условий задачи. Чтобы правильно оценить воздействие сил и составить уравнение движения, всегда рисуйте чертеж.

1

Если на тело массы m , находящегося на гладкой горизонтальной поверхности, действует
постоянная сила F , направленная под некото-рым углом α к горизонту и при этом тело перемещается на некоторое расстояние S , то говорят, что сила F совершила работу A . Величину работы определяют по формуле :

A = F × S cosα (1)

Однако в природе идеально гладких поверх-ностей не бывает, и на поверхности контакта двух тел всегда возникают силы трения. Вот как об этом пишется в учебнике : «Рабо-та силы трения покоя равна нулю, поскольку пе-ремещение отсутствует. При скольжении твер-дых поверхностей сила трения направлена про-тив перемещения. Ее работа отрицательна. Вследствие этого кинетическая энергия трущих-ся тел превращается во внутреннюю - трущиеся поверхности нагреваются».

А ТР = F ТР ×S = μNS (2)

где μ - коэффициент трения скольжения.

Только в учебнике О.Д. Хвольсона рассмотрен случай УСКОРЕННОГО ДВИ-ЖЕНИЯ при наличии сил трения: «Итак, следует отличать два случая производства работы: в пер-вом сущность работы заключается в преодолевании внешнего сопротивления движению, которое совершается без увеличения скорости движения тела; во втором - работа обнаруживается увели-чением скорости движения, к которому внешний мир относится индифферентно.

На деле мы обыкновенно имеем СОЕДИНЕ-НИЕ ОБОИХ СЛУЧАЕВ: сила f преодолевает какие-либо сопротивления и в то же время меня-ет скорость движения тела.

Положим, что f " не равно f , а именно, что f "< f . В таком случае на тело действует сила
f - f ", работа ρ которой вызывает увеличе-ние скорости тела. Мы имеем ρ =(f - f ")S ,
откуда

fS = f "S + ρ (*)

Работа r = fS состоит из двух частей: f "S тратится на преодолевание внешнего со-противления, ρ на увеличение скорости тела».

Представим это в современной интерпрета-ции (рис. 1). На тело массы m действует сила тяги F T , которая больше силы трения F TP = μN = μmg. Работу силы тяги в соответствии с формулой (*) можно записать так

A =F T S =F TP S +F a S = A TP + A a (3)

где F a =F T - F TP - сила, вызывающая ускоренное движение тела в соответствии со II зако-ном Ньютона: F a = ma . Работа силы трения отрицательна, но здесь и далее мы будем исполь-зовать силу трения и работу трения по модулю. Для дальнейших рассуждений необходим чис-ленный анализ. Примем следующие данные: m =10 кг; g =10 м/с 2 ; F T =100 Н; μ = 0,5; t =10 с. Проводим следующие вы-числения: F TP = μmg = 50 Н; F a = 50 Н; a =F a /m =5 м/с 2 ; V = at = 50 м/с; K = mV 2 /2 =12,5 кДж; S = at 2 /2 = 250 м; A a = F a S =12,5 кДж; A TP =F TP S =12,5 kДж. Таким образом суммарная работа A = A TP + A a =12,5 +12,5 = 25 кДж

А теперь рассчитаем работу силы тяги F T для случая, когда трение отсутствует (μ =0).

Проводя аналогичные вычисления, получаем: a =10 м/с 2 ; V =100м/с; K = 50 кДж; S = 500 м; A = 50 кДж. В последнем случае за те же 10 с мы получили работу в два раза больше. Могут возразить, что и путь в два раза больше. Однако, что бы ни говорили, получается парадоксальная ситуация: мощности, развивае-мой одной и той же силой, отличаются в два раза, хотя импульсы сил одинаковы I =F T t =1 кН.с. Как писал М.В. Ломоносов еще в 1748 г.: «...но все изменения, совершающиеся в природе, происходят таким образом, что сколько к чему прибавилось столько же отнимется у другого...». Поэтому попробуем получить другое выражение для определения работы.

Запишем II закон Ньютона в дифференци-альной форме:

F . dt = d (mV ) (4)

и рассмотрим задачу о разгоне первоначаль-но неподвижного тела (трение отсутствует). Ин-тегрируя (4), получим: F ×t = mV . Возведя в квадрат и разделив на 2m обе части равенства, получим:

F 2 t 2 / 2m = mV 2 / 2 A = K (5)

Таким образом, получили другое выражение для вычисления работы

A = F 2 t 2 / 2m = I 2 / 2m (6)

где I = F × t - импульс силы. Это выражение не связано с путем S , пройденным телом за время t , т.е. оно может быть использовано для вычис-ления работы, совершаемой импульсом силы и в том случае, если тело остается неподвижным, хотя, как утверждают во всех курсах физики, в этом случае никакой работы не совершается.

Переходя к нашей задаче об ускоренном движении с трением, запишем сумму импульсов сил: I T = I a + I TP , где I T = F T t ; I a = F a t ; I TP = F TP t . Возведя в квадрат сумму импуль-сов, получим:

F T 2 t 2 = F a 2 t 2 + 2F a F TP t 2 + F TP 2 t 2

Разделив все члены равенства на 2m , полу-чим:

или A= A a + A УТ + A TP

где A a =F a 2 t 2 / 2 m - работа, затрачиваемая ускорение; A TP = F TP 2 t 2 /2 m - работа, затрачиваемая на преодоление силы трения при равно-мерном движении, а A УT = F a F TP t 2 / m - ра-бота, затрачиваемая на преодоление силы трения при ускоренном движении. Численный расчет дает следующий результат:

A = A a + A Ут + A TP = 12,5 + 25 +12,5 = 50 кДж,

т.е. мы получили ту же самую величину работы, которую совершает сила F T при отсут-ствии трения.

Рассмотрим более общий случай движения тела с трением, когда на тело действует сила F , направленная под углом α к горизонту (рис. 2). Теперь сила тяги F T = F cos α , а силу F Л = F sin α - назовем силой левитации, она уменьшает силу тяжести P = mg , а в случае F Л = mg тело не будет оказывать давления на опору, будет находиться в квазиневесомом состоянии (состоянии левитации). Сила трения F TP = μ N = μ (P - F Л ) . Силу тяги можно записать в виде F T = F a + F TP , а из прямо-угольного треугольника (рис. 2) получим: F 2 =F Т 2 + F Л 2 . Умножая последнее соотно-шение на t 2 , получим баланс импульсов сил, а разделив на 2m , получим баланс энергий (ра-бот):

Приведем численный расчет для силы F = 100 Н и α = 30 o при тех же условиях (m = 10 кг; μ = 0,5; t = 10 с). Работа силы F будет равна A = F 2 t 2 /2m = 50 , а формула (8) дает следующий результат (с точностью до третьего знака после запятой):

50=15,625+18,974-15,4-12,5+30,8+12,5 кДж.

Как показывают расчеты, сила F = 100 Н, действуя на тело массы m = 10 кг под любым углом α за 10 с совершает одну и ту же работу 50 кДж.

Последний член в формуле (8) представляет собой работу силы трения при равномерном движении тела по горизонтальной поверхности со скоростью V

Таким образом, под каким бы углом не дей-ствовала данная сила F на данное тело массы m , при наличии трения или без него, за время t будет совершена одна и та же работа (даже если тело неподвижно):

Рис.1

Рис.2

СПИСОК ЛИТЕРАТУРЫ

  1. Матвеев А.Н. механика и теория относительности. Учеб.пособие для физ.спец.вузов. -М.: Высш.шк., 1986.
  2. Стрелков СП. Механика. Общий курс физики. Т. 1. - М.: ГИТТЛ, 1956.
  3. Хвольсон О.Д. Курс физики. Т. 1. РСФСР Госуд.Изд-во, Берлин, 1923.

Библиографическая ссылка

ИВАНОВ Е.М. РАБОТА ПРИ ДВИЖЕНИИ ТЕЛ С ТРЕНИЕМ // Современные проблемы науки и образования. – 2005. – № 2.;
URL: http://science-education.ru/ru/article/view?id=1468 (дата обращения: 20.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Допустим, что тело массы передвигают по горизонтальной поверхности стола из точки в точку В (рис. 5.26). При этом на тело со стороны стола действует сила трения. Коэффициент трения равен Один раз тело перемещается по траектории другой - по траектории Длина равна а длина Рассчитаем работу, которую совершит сила трения при этих движениях.

Как известно, сила трения Сила нормального давления так как поверхность стола горизонтальна. Поэтому сила трения в обоих движениях будет постоянна по модулю, равна и направлена во всех точках траектории в сторону, противоположную скорости.

Постоянство модуля силы трения позволяет написать выражение для работы силы трения сразу для всего расстояния, пройденного телом. При движении по траектории совершается работа

при движении по траектории

Знак минус появился потому, что угол между направлением силы и направлением перемещения равен 180°. Расстояние не равно поэтому работа не равна При переходе из точки А в точку В по разным траекториям сила трения совершает разную работу.

Таким образом, в отличие от сил всемирного тяготения и упругости, работа силы трения зависит от формы траектории, по которой двигалось тело.

Зная только начальное и конечное положения тела и не имея сведений о траектории движения, мы уже не можем заранее сказать, какая работа будет совершена силой трения. В этом состоит одно из существенных отличий силы трения от сил всемирного тяготения и упругости.

Это свойство силы трения может быть выражено и по-другому. Допустим, что тело было перемещено из по траектории а затем было возвращено обратно в по траектории . В результате этих двух движений образуется замкнутая траектория На всех участках этой траектории работа силы трения будет отрицательна. Полная работа, совершенная за все время этого движения, равна

работа силы трения на замкнутой траектории не равна нулю.

Отметим еще одну особенность силы трения. При перемещении тела из была совершена работа против силы трения. Если в точке В тело освободить от внешних воздействий, то сила трения не вызовет никакого обратного движения тела. Она не сможет вернуть ту работу, которая была совершена на преодоление ее действия. В результате работы силы трения происходит только уничтожение, разрушение механического движения тела и превращение этого движения в тепловое, хаотическое движение атомов и молекул. Работа силы трения показывает величину того запаса механического движения, который необратимо превращается во время действия силы трения в другую форму движения - в тепловое движение.

Таким образом, сила трения обладает рядом таких свойств, которые ставят ее в особое положение. В отличие от сил тяжести и упругости сила трения по модулю и направлению зависит от скорости относительного движения тел; работа силы трения зависит от формы траектории, по которой движутся тела; работа силы трения необратимо превращает механическое движение тел в тепловое движение атомов и молекул.

Все это при решении практических задач заставляет рассматривать действие сил упругости и трения отдельно. Вследствие этого силу трения часто в расчетах рассматривают как внешнюю по отношению к любой механической системе тел.

где - путь, пройденный телом за время действия силы.

После подстановки числовых значений получим.

Пример 3. Шарик массой =100 г упал с высоты =2,5 м на горизонтальную плиту и отскочил от нее вследствие упругого удара без потери скорости. Определить среднюю скорость , действовавшую на шарик при ударе, если продолжительность удара =0,1 с.

Решение. По второму закону Ньютона произведение средней силы на время ее действия равно изменению импульса тела, вызванного этой силой, т.е.

где и - скорости тела до и после действия силы; - время, в течение которого действовала сила.

Из (1) получим

Если учесть, что скорость численно равна скорости и противоположна ей по направлению, то формула (2) примет вид:

Так как шарик упал с высоты, то его скорость при ударе

С учетом этого получим

Подставив сюда числовые значения, найдем

Знак «минус» показывает, что сила направлена противоположно скорости падения шарика.

Пример 4. Для подъема воды из колодца глубиной =20 м установили насос мощностью =3,7 кВт. Определить массу и объем воды, поднятой за время =7 ч, если к.п.д. насоса =80%.

Решение. Известно, что мощность насоса с учетом к.п.д. определяется формулой

где - работа, совершенная за время; - коэффициент полезного действия.

Работа, совершенная при подъеме груза без ускорения на высоту, равна потенциальной энергии, которой обладает груз на этой высоте, т.е.

где - ускорение свободного падения.

Подставив выражение работы по (2) в (1), получим

Выразим числовые значения величин, входящих в формулу (3), в единицах СИ: =3,7 кВт = 3,7 103 Вт; =7 ч = 2,52 104 с; =80%=0,8; =20 м.

кг кг м2 с2/(с3 м м), кг=кг

Вычислим

кг=3,80 105 кг=380 т.

Чтобы определить объем воды, надо ее массу разделить на плотность

Пример 5. Искусственный спутник Земли движется по круговой орбите на высоте =700 км. Определить скорость его движения. Радиус Земли =6,37 106 м, масса ее =5,98 1024 кг.

Решение. На спутник, как и на всякое тело, движущееся по круговой орбите, действует центростремительная сила

где - масса спутника; V- скорость его движения; - радиус кривизны траектории.

Если пренебречь сопротивлением среды и силами тяготения со стороны всех небесных тел, то можно считать, что единственной силой является сила притяжения между спутником и Землей. Эта сила и играет роль центростремительной силы.

Согласно закону всемирного тяготения

где - гравитационная постоянная.

Приравняв правые части (1) и (2), получим

Отсюда скорость спутника

Выпишем числовые значения величин в СИ: = 6,67*10-11 м3/(кг с2); =5,98 1024 кг; = 6,37 106 м; = 700 км = 7 105 м.

Проверим единицы правой и левой частей расчетной формулы (3), чтобы убедиться, что эти единицы совпадают. Для этого подставляем в формулу вместо величин их размерность в Международной системе:

Вычислим

Пример 6. Маховик в виде сплошного диска массой т = 80 кг с радиусом = 50 см начал вращаться равноускоренно под действием вращающего момента = 20 Н м. Определить: 1) угловое ускорение; 2) кинетическую энергию, приобретенную маховиком за время = 10 с от начала вращения.

Решение. 1. Из основного уравнения динамики вращательного движения,

где - момент инерции маховика; - угловое ускорение, получим

Известно, что момент инерции диска определяется формулой

Подставив выражение для из (2) в (1), получим

Выразим величины в единицах СИ: = 20 Н м; т = 80 кг; = 50 см = 0,5 м.

Проверим единицы правой и левой частей расчетной формулы (3):

1/c2 = кг х м2/(с2х кг х м2) = 1/с2

Вычислим

2. Кинетическая энергия вращающегося тела выражается формулой:

где - угловая скорость тела.

При равноускоренном вращении угловая скорость связана с угловым ускорением соотношением

где - угловая скорость в момент времени; - начальная угловая скорость.

Так как по условию задачи =0, то из (5) следует

Подставив выражение для из (6), из (2) в (4), получим

Проверим единицы правой и левой частей формулы (7):

Вычислим

Пример 7. Уравнение колеблющейся точки имеет вид.(смещение в сантиметрах, время в секундах). Определить: 1) амплитуду колебания, круговую частоту, период и начальную фазу; 2) смещение точки в момент времени с; 3) максимальную скорость и максимальное ускорение.

Решение. 1. Напишем уравнение гармонического колебательного движения в общем виде

где х - смещение колеблющейся точки; А - амплитуда колебания; -круговая частота; - время колебания; - начальная фаза.

Сравнивая заданное уравнение с уравнением (1), выпишем: А=3 см,

Период колебания определяется из соотношения

Подставляя в (2) значение, получим

2. Для определения смещения подставим в заданное уравнение значение времени:

3. Скорость колебательного движения найдем, взяв первую производную от смещения колеблющейся точки:

(Максимальное значение скорость будет иметь при =1:

Ускорение есть первая производная от скорости по времени:

Максимальное значение ускорения

Знак «минус» показывает, что ускорение направлено в сторону, противоположную смещению.