Классификация торможения по механизмам развития. Торможение, виды торможения. Понятие о центральном торможении (И.М.Сеченов). Значение для координирующей функции ЦНС. Продолжительность изучения темы_______________ часов

Торможение в ЦНС - особый нервный процесс, вызываемый возбуждением и проявляющийся в подавлении другого возбуждения.

Первичное постсинаптическое торможение - торможение, несвязанное с первоначальным процессом возбуждения и развивающееся в результате активации специальных тормозных структур. Тормозные синапсы образуют в своих окончаниях тормозной медиатор (ГАМК, глицин, в отдельных синапсах ЦНС роль тормозного медиатора может играть ацетилхолин). На постсинаптической мембране развивается тормозной постсинаптический потенциал (ТПСП), снижающий возбудимость мембраны постсинаптического нейрона. Тормозными нейронами могут служить только вставочные нейроны, афферентные нейроны всегда являются возбуждающими. В зависимости от вида тормозных нейронов и структурной организации нейронной сети постсинаптическое торможение подразделяется на:

  • 1. Реципрокное торможение. Оно лежит в основе функционирования мышц-антагонистов и обеспечивает расслабление мышцы в момент сокращения мышцы-антагониста. Афферентное волокно, проводящее возбуждение от проприорецепторов мышц (например, сгибателей), в спинном мозге делится на две ветви: одна из них образует синапс на мотонейроне, иннервирующем мышцу-сгибатель, а другая - на вставочном, тормозном, образующем тормозной синапс на мотонейроне, иннервирующем мышцу-разгибатель. В результате возбуждение, приходящее по афферентному волокну, вызывает возбуждение мотонейрона, иннервирующего сгибатель и торможение мотонейрона мышцы-разгибателя.
  • 2. Возвратное торможение. Оно реализуется через тормозные клетки Реншоу, открытые в спинном мозге. Аксоны мотонейронов передних рогов отдают коллатераль на тормозной нейрон Реншоу, аксоны которого возвращаются на тот же мотонейрон, образуя на нем тормозные синапсы. Таким образом формируется контур с отрицательной обратной связью, позволяющий стабилизировать частоту разрядов мотонейрона.
  • 3. Центральное (Сеченовское) торможение. Оно осуществляется тормозными вставочными нейронами, через которые реализуется влияние на мотонейрон спинного мозга, возбуждения, возникающего в зрительных буграх под влиянием их раздражения. На мотонейроне спинного мозга суммируются ВПСП, возникающие в болевых рецепторах конечности и ТПСП, возникающие в тормозных нейронах под влиянием возбуждения таламуса и ретикулярной формации. В результате время защитного сгибательного рефлекса возрастает.
  • 4. Латеральное торможение осуществляется с помощью тормозных вставочных нейронов в параллельных нейронных сетях.
  • 5. Первичное пресинаптическое торможение развивается в терминальных отделах аксонов (перед пресинаптической структурой) под влиянием специальных аксо-аксональных тормозных синапсов. Медиатор этих синапсов вызывает деполяризацию мембраны терминалей и приводит их в состояние, подобное катодической депрессии Вериго. Мембрана в области такого бокового синапса препятствует проведению потенциалов действия к пресинаптической мембране, активность синапса уменьшается.

Пресинаптическим торможением называют снижение или выключение активности клетки за счет синаптического торможения оканчивающейся на ней возбуждающей терминали. Явление пресинаптического торможения зафиксировали Гассер и Грэхем в 1933 г., наблюдая эффект развития торможения сгибательных рефлексов при раздражении других корешков. Данный вид торможения термином “пресинаптическое торможение” впервые обозначили Фрэнк и Фуортес в 1957 г.

Увеличение частоты предварительных раздражений изменяет характер подавления. В частности, одна серия стимуляции с частотой 200-300 импульсов в секунду вызывает максимальное подавление менее чем на 10%, а две серии - подавление менее чем на 20%. При пресинаптическом торможении подавление моносинаптического ВПСП не связано с какими-либо изменениями их временных параметров.

Тормозные синапсы на окончаниях волокон обеспечивают довольно значительную деполяризацию, называемую деполяризацией первичных афферентов, или же первичную эфферентную деполяризацию (ПАД). В спинном мозгу ПАД обнаруживает длительную фазу (до 25 мс) нарастания до закругленной вершины и характеризуется большей продолжительностью по сравнению с постсинаптическими процессами. Большая продолжительность ПАД объясняется или длительным действием медиатора, или медленным, пассивным снижением деполяризации вследствие большой электрической постоянной времени мембраны. Пассивно снижающаяся компонента ПАД снимается импульсом, распространяющимся по афферентному волокну до его центральных окончаний.

Существует соответствие во всех отношениях между наблюдаемой деполяризацией первичных афферентных волокон и подавлением их синаптического возбуждающего действия.

Пресинаптическая деполяризация афферентов уменьшает величину их пресинаптического спайкового потенциала и таким образом уменьшает вызываемый им ВПСП. По данным Каца (1962), снижение спайкового потенциала на 5 мВ приводит к снижению выброса квантов медиатора и к снижению ВПСП до 50% и менее.

Характер ПАД в различных нейронах отличается по своим характеристикам. В целом временные параметры сравнимы. ПАД волокон кожного нерва отличается большей величиной амплитуды на одиночные раздражения с более коротким латентным периодом (около 2 мс), максимум также достигается ранее, чем в случае ПАД, вызываемых ритмическим раздражением нервных волокон, идущих от мышц. ПАД в клиновидном ядре имеет короткий латентный период (около 2 мс) и быстрый подъем до максимума.

Тормозные синапсы имеют химическую природу, медиатором в них служит ГАМК. Деполяризация первичных афферентов инактивирует возбуждающие натриевые каналы. Шунтирование натриевых каналов снижает амплитуду пресинаптического потенциала действия. В результате синаптическая передача моторного импульса ослабляется или исключается.

Во всех типах возбуждающих синапсов обнаруживается тесная зависимость между деполяризацией пресинаптических волокон и торможением синаптической передачи. Это торможение влияет не только на местные спинномозговые рефлексы, но также и на синаптические передачи в восходящих путях как от кожных афферентов, так и на спиноцеребеллярные. Кроме того, пресинаптическое торможение влияет на синаптические передачи задних столбов в ядра нежного и клиновидного пучков. Нисходящие импульсы из коры головного мозга и ствола мозга также оказывают пресинаптическое тормозное влияние на волокна группы и кожные афферентные волокна в спинном мозгу и клиновидном ядре. Обнаружено пресинаптическое торможение вторичных афферентных волокон отходящих от клиновидного ядра и имеющих переключение в таламусе. Синапсы с пресинаптическим торможением обнаружены в связанном с таламусом ядре мозга - латеральном коленчатом теле. В коре головного мозга не выявлено синаптических структур, которые могли бы осуществлять пресинаптическое торможение. На этих высших уровнях нервной системы доминирует постсинаптическое торможение. Пресинаптическое торможение действует как отрицательная обратная связь, уменьшая приток сенсорной информации в центральную нервную систему. Обычно эта отрицательная обратная связь не имеет точной топографии, но обычно концентрируется в пределах одной сенсорной модальности. Пресинаптическое торможение служит механизмом регуляции двигательных систем спинного мозга. Его особенностью является возможность специфического воздействия на отдельные синаптические входы без изменений возбудимости всей клетки. Таким образом, избыточная информация устраняется еще до того, как достигает места интеграции клеточного тела нейрона.

Вторичное торможение не связано с тормозными структурами, является следствием предшествующего возбуждения. Пессимальное торможение (открыто Н.Е. Введенским в 1886 г.) развивается в полисинаптических рефлекторных дугах при чрезмерной активации центральных нейронов и играет предохранительную роль. Оно выражается в стойкой деполяризации мембраны, приводящей к инактивации натриевых каналов. Торможение вслед за возбуждением» развивается в нейронах непосредственно после потенциала действия и характерно для клеток с длительной следовой гиперполяризацией. Таким образом, процессы торможения в локальных нейронных сетях уменьшают избыточную активность и участвуют в поддержании оптимальных режимов активности нейронов.

Механизмы координации рефлекторной деятельности: реципрокная иннервация, доминанта (А.А.Ухтомский), принципы обратной связи и общего конечного пути, принцип субординации.

Принцип иррадиации возбуждения. Иррадиация - распространение, расширение рефлекторного ответа. Это феномен “растекания” возбуждения по нейронам центральной нервной системы, развивающийся или после действия сверхсильного раздражителя, или на фоне выключения торможения. Распространение возбуждения возможно за счет многочисленных контактов между нейронами, возникающих при ветвлении аксонов и дендритов вставочных нейронов. Иррадиация позволяет увеличивать количество участвующих в рефлекторном ответе групп мышц. Ограничивают иррадиацию тормозные нейроны и синапсы.

На фоне действия стрихнина, блокирующего тормозные синапсы, наступают генерализованные судороги при тактильной стимуляции любого участка тела или при раздражении рецепторов любой сенсорной системы. В коре больших полушарий наблюдается явление иррадиации процесса торможения.

В основе координации рефлекторных актов лежат определенные механизмы, основанные на структурно-функциональной организации ЦНС и обозначаемые как “принципы” формирования рефлекторного ответа.

Принцип реципрокной иннервации. Реципрокная (сопряженная) координация открыта Н.Е. Введенским в 1896 году. Обусловлена реципрокным торможением, т.е. активация одного рефлекса одновременно сопровождается торможением второго, противоположного по своей физиологической сущности.

Принцип общего «конечного пути». Открыт английским физиологом Ч.Шеррингтоном (1906). Один и тот же рефлекс (например, сокращение мышцы) может быть вызван раздражением различных рецепторов, т.к. один и тот же конечный - мотонейрон передних рогов спинного мозга входит в состав многих рефлекторных дуг. Рефлексы, дуги которых имеют общий конечный путь, подразделяются на агонистические и антагонистические. Первые усиливают, вторые тормозят друг друга, как бы конкурируя за конечный результат. В основе подкрепления лежит конвергенция и суммация, в основе конкуренции за конечный путь - сопряженное торможение.

Принцип обратной связи. Любой рефлекторный акт контролируется благодаря обратной связи с центром. Обратная связь состоит во вторичной афферентации, поступающей в ЦНС от рецепторов, которые возбуждаются при изменении функциональной активности рабочего органа. Например, потенциалы действия, обусловленные возбуждением рецепторов мышц, сухожилий и суставных сумок сгибающейся конечности, в процессе осуществления акта сгибания поступают во все структуры ЦНС, начиная от центров спинного мозга. Различают обратную связь положительную (усиливающую рефлекс, который является источником обратной афферентации) и отрицательную, когда рефлекс, ее вызывающий, тормозится. Обратная связь лежит в основе саморегуляции функций организма.

Принцип отдачи. Феномен отдачи состоит в быстрой смене одного рефлекса другим противоположного значения. Например, после сгибания конечности ее разгибание происходит быстрее, особенно если сгибание было сильным. Механизм этого явления состоит в том, что при сильном сокращении мышц возбуждаются рецепторы Гольджи сухожилий, которые через тормозные вставочные нейроны тормозят мотонейроны сгибательных мышц и образуют ветвь, которая возбуждает центр мышц - разгибателей. Благодаря этому механизму можно получить сумму рефлексов - цепные рефлексы (окончание одного рефлекторного ответа инициирует следующий) и ритмические (многократное повторение ритмичных движений).

Принцип доминанты. Конечный поведенческий эффект при координации рефлексов может быть изменен в зависимости от функционального состояния центров (наличия доминантных очагов возбуждения).

Особенности доминантного очага возбуждения:

  • 1. Повышенная возбудимость нейронов.
  • 2. Стойкость процесса возбуждения.
  • 3. Способность к суммации возбуждения.
  • 4. Иннертность. Очаг доминирует, подавляет соседние центры путем сопряженного торможения, возбуждаясь за их счет. Доминанту можно получить химическим воздействием на центры, например, стрихнином. В основе доминантного возбуждения лежит способность возбудительного процесса к иррадиации по нейронным цепям.

Понятие о торможении

Торможение в ЦНС

Механизм передачи возбуждения в концевой пластинке

В настоящее время представлено много доказательств химической природы передачи импульса и изучен ряд медиаторов, т. е. веществ, способствующих передаче возбуждения с нерва на рабочий орган или с одной нервной клетки на другую.

В нервно-мышечных синапсах, в синапсах парасимпатической нервной системы, в ганглиях симпатической нервной системы, в ряде синапсов центральной нервной системы медиатором является ацетилхолин. Эти синапсы названы холинергическими.

Обнаружены синапсы, в которых передатчиком возбуждения является адреналиноподобное вещество; они названы адреналергическгши. Выделены и другие медиаторы: гаммааминомасляная кислота (ГАМК), глютаминовая и

Торможение существует наряду с возбуждением и представляет собой одну из форм деятельности нейрона. Торможением называют особыйнервный процесс, выражающийся в уменьшении или полном отсутствииответной реакции на раздражение.

Явление центрального торможения было открыто И.М. Сеченовым в 1862 г. Он показал возможность торможения двигательных рефлексов лягушки при химическом раздражении зрительных бугров головного мозга. Классический опыт Сеченова заключается в следующем: у лягушки с перерезанным головным мозгом на уровне зрительных бугров определяли время сгибательного рефлекса при раздражении лапки серной кислотой. После этого на зрительные бугры накладывали кристаллик поваренной соли и снова определяли время рефлекса. Оно постепенно увеличивалось, вплоть до полного исчезновения реакции. После снятия кристаллика соли и промывания мозга физиологическим раствором время рефлекса постепенно восстанавливалось. Это позволило говорить о том, что торможение - актив­ный процесс, возникающий при раздражении определенных отделов центральной нервной системы.

Позже И. М. Сеченовым и его учениками было показано, что торможение в центральной нервной системе может возникать при нанесении сильного раздражения на любые афферентные пути.

Благодаря микроэлектродной технике исследования стало возможным изучение процесса торможения на клеточном уровне.

В центральной нервной системе наряду с возбуждающими имеются и тормозящие нейроны. На каждой нервной клетке располагаются возбуждающие и тормозящие синапсы. А поэтому в каждый данный момент на теле нейрона возникает в одних синапсах возбуждение, а в других - торможение; соотношение этих процессов определяет характер ответной реакции.

Различают два вида торможения в зависимости от механизмов его возникновения: деполяризационное и гиперполяризационное.



Деполяризационное торможение возникает вследствие длительной

деполяризации мембраны, а гиперполяризаиионное - вследствие

гиперполяризации мембраны. Механизмы мы рассматривать не будем, а ограничимся лишь констатацией фактов.

В основе возникновения деполяризационного торможения лежит инактивация мембраны по натрию, вследствие чего уменьшается потенциал действия и его раздражающее влияние на соседние участки, в итоге пре­кращается проведение возбуждения.

Гиперполяризационное торможение осуществляется с участием

особых тормозных структур и связано с изменением проницаемости мембраны по отношению к калию и хлору, что вызывает увеличение мембранного и порогового потенциалов, в результате чего становится невозможной ответная реакция.

По характеру возникновения различают первичное и вторичное торможение. Первичное торможение возникает под влиянием раздражения сразу без предварительного возбуждения и осуществляется с участием тормозных синапсов. Вторичное торможение осуществляется без участия тормозных структур и возникает вследствие перехода возбуждения в торможение.

Первичное торможение по механизму возникновения может быть гиперполяризационным и деполяризационным, а по месту возникновения - постсинаптическим и пресинаптическим.

Изучив принципы рефлекторной регуляции функций, процессы возникновения и проведения возбуждения, вы поняли, что на все эти процессы можно воздействовать - можно блокировать проведение импульса новокаином, можно увеличить или уменьшить возбудимость ткани, изменив ионный состав окружающей среды, можно воздействовать синаптоактивными веществами. Однако есть механизм, с помощью которого сам организм воздействует на процессы возбуждения и проведения импульса - торможение. Суть этого великолепного достижения эволюции необыкновенно проста: первый вариант - снижение возбудимости клетки вплоть до полной ее невозбудимости, второй вариант - изменение частоты идущих к клетке возбуждающих импульсов вплоть до прекращения проведения. Механизмы торможения - это преподнесенный нам в руки природой еще один путь воздействия на процессы возбуждения и проведения нервного импульса - можно воздействовать на процессы торможения, но для этого их нужно хорошо понять.

С л о в а р ь т е м ы:

Тормозные нейроны

Тормозные медиаторы

ВПСП, ТПСП

Пресинаптическое торможение, Постсинаптическое торможение

Первичное торможение, Вторичное торможение

Торможение Введенского (пессимальное)

Под ТОРМОЖЕНИЕМ понимают самостоятельный нервный активный процесс, вызываемый возбуждением, который проявляется в угнетении или полном выключении другого возбуждения. Торможение обусловлено нервными импульсами, возникающими в особых тормозных нейронах (клетки Рэншоу в спинном мозге, клетки Пуркинье коры мозжечка, звездчатые клетки коры головного мозга и др.).

Впервые возможность влияния на рефлекторные процессы без воздействия на структуры рефлекторной дуги была обнаружена И.М. Сеченовым. В 1863 году И.М. Сеченовым было открыто ЦЕНТРАЛЬНОЕ ТОРМОЖЕНИЕ (СЕЧЕНОВСКОЕ). И.М. Сеченову удалось установить, что сверхпороговое возбуждение центров среднего мозга приводит к торможению периферических, спинальных рефлексов.

Рисунок 23. Схема опыта И.М.Сеченова для демонстрации центрального торможения до и после аппликации на зрительные бугры NaCl .

Каким же образом можно изменить свойства нейронов так, чтобы они стали невозбудимы? Вспомним, в каких состояниях может находиться нейрон.

Рисунок 24 Состояния нейрона

На рисунке представлены состояния нейрона: поляризован - обладает мембранным потенциалом покоя, гиперполяризован и деполяризован – потенциал действия. Пока не расшифровывая аббревиатуры «ТПСП», вспомним, что гиперполяризация – это следовой процесс, возникающий при восстановлении МПП после возбуждения. Гиперполяризованный нейрон менее возбудим, потому, что потенциал его мембраны «уходит» от критического уровня деполяризации. Таким образом, снижение возбудимости нейрона может быть результатом длительного возбуждения. Кроме того, возможно простое утомление нейронов, и особенно, синапсов – расходуются запасы АТФ, необходимые для восстановления МПП, запасы медиатора. Следовательно, торможение может быть результатом длительной работы. Такой вариант торможения распространен в ЦНС и получил название вторичного торможения . Один из видов вторичного торможения получил название ПЕССИМАЛЬНОЕ ТОРМОЖЕНИЕ (ТОРМОЖЕНИЕ ВВЕДЕНСКОГО). Такое торможение развивается в результате действия раздражителей с очень высокой частотой. В результате клетка не успевает восстановить свой МПП, остается деполяризованной и, следовательно, невозбудимой.

Нас интересует торможение как самостоятельный процесс . ЦНС обладает механизмами изменения свойств нейрона без предварительного возбуждения. Вспомним результат выделения медиатора пресинаптической мембраной: на постсинаптической мембране происходит деполяризация и возникает локальный ответ. Тормозные нейроны синтезируют другие медиаторы - тормозные. Такими медиаторами могут быть глицин, гамма-амино-масляная кислота (ГАМК). Эти медиаторы, взаимодействуя со своими рецепторами, открывают другие каналы, например калиевые или хлорные. Что же происходит в этом случае с постсинаптической мембраной?

Если вспомнить о том, что ионы калия движутся из клетки, то становится ясно, что при активации калиевых каналов происходит гиперполяризация мембраны и снижение возбудимости нейрона. Тормозной медиатор, как и возбуждающий, активирует рецептор управляемые каналы, однако не натриевые, а калиевые. Эта активация вызывает увеличение выхода ионов калия наружу и ГИПЕРПОЛЯРИЗАЦИЮ мембраны. Изменение потенциала мембраны при гиперполяризации называется тормозной постсинаптический потенциал (ТПСП). Во многих тормозных синапсах аналогичный эффект имеет активация каналов для хлора, увеличивающая его транспорт внутрь клетки. Результатом ТПСП является удаление МПП от критического уровня деполяризации возбуждение становится либо вовсе невозможным, либо для возбуждения требуется значительно большая сила раздражителя. Нервные импульсы, возникающие при возбуждении тормозных нейронов, вызывают гиперполяризацию постсинаптической мембраны и тормозной постсинаптический потенциал (ТПСП), это наиболее распространенный тип торможения в нервной системе, который называется ПОСТСИНАПТИЧЕСКИМ ТОРМОЖЕНИЕМ . Постсинаптическое торможение является первичным торможением – самостоятельный процесс, вызванный возбуждением тормозных нейронов .

Понятно, что в случае деполяризующего медиатора изменение потенциала мембраны будет называться возбуждающий постсинаптический потенциал (ВПСП).

Рисунок 25 Изменение мембранного потенциала при ВПСП и ТПСП

Рисунок 26 Суммация потенциалов на мембране нейрона

Центральные синапсы отличаются тем, что медиаторы вызывают появление на постсинаптической мембране только локального ответа, (ВПСП или ТПСП). ВПСП обладает всеми свойствами ЛО - зависит от силы раздражителя (количества выделившегося медиатора), суммируется и не передается по аксону. Амплитуда одиночного ВПСП довольно мала - несколько мВ, поэтому для уменьшения заряда мембраны до критического уровня необходима либо одновременная активация нескольких возбуждающих синапсов - ПРОСТРАНСТВЕННАЯ СУММАЦИЯ, либо повышение частоты поступающих импульсов - ВРЕМЕННАЯ СУММАЦИЯ. Если одновременно с ВПСП на мембране нейрона формируется и ТПСП, то эти изменения мембранного потенциала суммируются, следовательно, если величины ВПСП и ТПСП примерно одинаковы, то изменения мембранного потенциала нейрона, на котором суммируются воздействия, не произойдет. На рис.26 представлена схема регистрации мембранного потенциала возбуждающего и тормозного нейронов, которые одновременно воздействуют на один нейрон. Изменений мембранного потенциала нет. На рис 27 слева два возбуждающих нейрона, действуя на нейрон 1 одновременно, могли бы вызвать его возбуждение. Если одновременно на этот нейрон подействует тормозной, то возбуждения не произойдет.

Существует еще один вариант первичного торможения в ЦНС: ПРЕСИНАПТИЧЕСКОЕ ТОРМОЖЕНИЕ. Такое торможение возникает в том случае, когда нервный импульс или просто не достигает синаптического окончания аксона, или снижается его частота. Такое торможение осуществляется благодаря аксоаксональным синапсам, образованным терминалями аксонов тормозных интернейронов и аксонами возбуждающих нейронов (рис.27, справа). В этих синапсах торможение определяется действием ГАМК, открывающей хлорные каналы на пресинаптических мембранах (мембрана возбуждающего нейрона). Из - за высокого МПП мембраны аксона (действие электрического, а не концентрационного градиента) ионы хлора выходят через мембрану наружу. Выход ионов вызывает незначительную деполяризацию постсинаптической мембраны, являющейся в данном случае участком мембраны аксона другого нейрона. Деполяризация мембраны аксона ведет к инактивации натриевой проводимости. Возникает блокирование проведения нервного импульса, что уменьшает частоту, или полностью угнетает возбуждающий потенциал, идущий к клетке по возбуждающим нервным окончаниям.

Рисунок 27 Первичное торможение

Примером реципрокности может быть регуляция спинным мозгом противоположных по функциональному назначению мышц конечностей. Так, при возбуждении мотонейронов, иннервирующих мышцы сгибатели правой ноги, тормозятся мотонейроны мышц разгибателей этой ноги и возбуждаются мото­нейроны мышц разгибателей левой ноги. Формирующийся цепной характер рефлексов вслед за этим вызывает возбуждение мотоней­ронов разгибателей правой ноги и реципрокно - торможение мо­тонейронов сгибателей правой ноги и возбуждение мотонейронои сгибателей левой ноги. Таким образом, реципрокные взаимоотноше­ния между указанными рефлексами обеспечивают цепной шагатель­ный рефлекс. Реципрокные взаимоотношения имеют место и между рефлексами вдоха и выдоха, когда возбуждение центра вдоха тор­мозит центр выдоха и наоборот, что обеспечивает ритмичную смену фаз в процессе внешнего дыхания.

Принцип доминанты

Принцип доминанты был открыт А.А.Ухтомским. Доминантой на­зывают общий принцип деятельности нервной системы, проявля­ющийся в виде господствующей в течение определенного времени системы рефлексов, реализуемых доминирующими центрами, кото­рые подчиняют себе или подавляют деятельность других нервных центров и рефлексов. Нейроны доминирующих центров приобретают более низкий уровень критической деполяризации мембран, т.е. становятся более возбудимыми, и способны эффективнее осущест­влять пространственную и временную суммацию нервных импульсов. Синаптическое проведение к этим нейронам облегчено и поэтому они могут возбуждаться и за счет «посторонних» импульсов от не имеющих прямых связей с доминирующими центрами информаци­онных каналов. Вследствие суммации многочисленных ВПСП воз­буждение нейронов как и число возбужденных клеток в доминиру­ющем центре нарастает и осуществляемые им рефлекторные реак­ции легко реализуются. Преобладание рефлексов доминирующего центра над другими рефлекторными актами становится особенно выраженным, поскольку через систему вставочных нейронов доми­нирующий центр сопряженно тормозит другие центры и текущие рефлексы. Принцип доминанты позволяет концентрировать внима­ние и строить поведение для достижения определенной намеченной цели.

Принцип субординации нервных центров

Принцип субординации нервных центров (принцип подчинения) проявляется в виде регулирующего влияния выше расположенных нервных центров на ниже расположенные. Так, двигательные цент­ры головного мозга управляют спинальными мотонейронами. При­мером такого влияния является феномен центрального торможения спинальных рефлексов открытый И.М.Сеченовым и получивший название сеченовского торможения. В эксперименте И.М.Сеченова раздражение зрительных бугров лягушки с помощью кристаллика поваренной соли (т.е. раздражение ретикулярной формации среднего мозга) приводило к торможению спинальных двигательных рефлек­сов, вызываемых погружением лапки лягушки в слабый раствор кислоты. Следовательно, торможение центров спинного мозга яви­лось следствием возбуждения центров среднего мозга. Прекращение этого тормозного контроля при перерыве цереброспинальных про­водящих путей вызывает резкое повышение возбудимости спиналь­ных центров и гиперрефлексию.

Принцип обратной афферентации

Принцип обратной афферентации заключается в рецепторном вос­приятии результатов рефлекторного акта и проведении информации назад в структуры нервного центра, где она обрабатывается и срав­нивается с сохраняющимися параметрами возбуждения. Обратная афферентация реализуется в виде положительной или отрицательной обратной связи. Таким образом, с помощью обратной афферентации нервные центры осуществляют непрерывный контроль эффективности, целесообразности и оптимальности рефлекторной деятельности.

2) Основные функции лимбической системы: 1) участие в формировании пищевого, полового, оборонительного инстинктов; 2) регуляция вегетативно-висцеральных функций; 3) формирование социального поведения; 4) участие в формировании механизмов долговременной и кратковременной памяти; 5) выполнение обонятельной функции; 6) торможение условных рефлексов, усиление безусловных; 7) участие в формировании цикла «бодрствование – сон». таламуса à кора поясной извилины à парагиппокампова извилина à гиппокамп). Этот круг имеет отно­шение к памяти и процессам обучения. Лимбическая система имеет отношение к регулированию уровня реакции автономной, соматической систем при эмоционально-мотивационной деятельно­сти, регулированию уровня внимания, восприятия, воспроизведения эмоционально значимой информации. Лимбическая система опре­деляет выбор и реализацию адаптационных форм поведения, дина­мику врожденных форм поведения, поддержание гомеостаза, гене­ративных процессов. Наконец, она обеспечивает создание эмоцио­нального фона, формирование и реализацию процессов высшей нервной деятельности.

Слово «лимбическая» означает «пограничная». Изначально этот термин использовали для описания структур, ограничивающих базальные регионы большого мозга, но по мере накопления знаний о функциях лимбической системы термин «лимбическая система» расширился до обозначения всего нервного контура, контролирующего эмоциональное поведение и мотивационное возбуждение. Главной частью лимбической системы является гипоталамус и связанные с ним структуры. Помимо участия в регуляции поведенческих реакций эти области контролируют многие показатели внутренней среды организма, например температуру тела, осмоляльность жидкостей тела, массу тела, а также потребность в еде и жидкости. Все эти функции называют вегетативными функциями мозга, и их регуляция тесно связана с поведением.

Билет 10

Существуют следующие методы исследования функций ЦНС:

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга.

3. Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.

5. Электрофизиологические методы:

а. электроэнцефалография – регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г. Бергером.

б. регистрация биопотенциалов различных нервных центров; используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро.

в. метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;

6. метод внутримозгового введения веществ с помощью микроинофореза;

7. хронорефлексометрия – определение времени рефлексов.

В состав промежуточного мозга входят таламус и гипоталамус, они связывают ствол мозга с корой большого мозга.

Таламус – парное образование, наиболее крупное скопление серого вещества в промежуточном мозге.

Топографически выделяют передние, средние, задние, медиальные и латеральные группы ядер.

По функции выделяют:

1) специфические:

а) переключающие, релейные. Получают первичную информацию от различных рецепторов. Нервный импульс по таламокортикальному тракту идет в строго ограниченную зону коры головного мозга (первичные проекционные зоны), за счет этого возникают специфические ощущения. Ядра вентрабазального комплекса получают импульс от рецепторов кожи, проприорецепторов сухожилий, связок.

Импульс направляется в сенсомоторную зону, происходит регуляция ориентировки тела в пространстве;

б) ассоциативные (внутренние) ядра. Первичный импульс идет от релейных ядер, перерабатывается (осуществляется интегративная функция), передается в ассоциативные зоны коры головного мозга;

2) неспецифические ядра. Это неспецифический путь передачи импульсов в кору головного мозга, изменяется частота биопотенциала (моделирующая функция);

Физиологическая роль – высший подкорковый интегративный центр вегетативной нервной системы, который оказывает действие на:

1) терморегуляцию. Передние ядра это центр телоотдачи. Задние ядра – центр теплопродукции и обеспечения сохранности тепла при понижении температуры;

2) гипофиз. Либерины способствуют секреции гормонов передней доли гипофиза, статины тормозят ее;

3) жировой обмен. Раздражение латеральных (центра питания) ядер и вентромедиальных (центра насыщения) ядер ведет к ожирению, торможение – к кахексии;

4) углеводный обмен. Раздражение передних ядер ведет к гипогликемии, задних – к гипергликемии;

5) сердечно-сосудистую систему. Раздражение передних ядер оказывает тормозное влияние, задних – активирующее;

6) моторную и секреторную функции ЖКТ. Раздражение передних ядер повышает моторику и секреторную функцию ЖКТ, задних – тормозит половую функцию;

7) поведенческие реакции. Раздражение стартовой эмоциональной зоны (передних ядер) вызывает чувство радости, удовлетворения, эротические чувства.

Билет №11

1. Функции и роль гипоталамуса в осуществлении вегетативных функций обмена веществ.

2. Понятие об инстинктах. Виды инстинктов. Формы научения.

1) Гипоталамус является высшим подкорковым центром вегетативной нервной системы. В этой области расположены центры, регулирующие все вегетативные функции, обеспечивающие постоянство внутренней среды организма, а также регулирующие жировой, белковый, углеводный и водно-солевой обмен.
Гипоталамус участвует в регуляции практически всех вегетативных функций. Он регулирует сердечно-сосудистую систему, органы пищеварения, водно-солевой, углеводный, жировой и белковый обмен, мочеотделение, функции желез внутренней секреции, поддерживает температуру тела. В гипоталамусе происходят сложные реакции, которые дополняются гормональным компонентом.
Возбуждение задних ядер гипоталамуса вызывает: расширение зрачков и глазных щелей, учащение сердцебиения, сужение сосудов и повышение артериального давления, торможение моторной функции желудка и кишечника, увеличение содержания в крови адреналина и норадреналина, повышение глюкозы в крови.
Ответные реакции, возникающие при раздражении разных участков гипоталамуса, имеют особенность, которая заключается в участии в них многих органов тела. Ядра гипоталамуса участвуют во многих, в том числе и поведенческих реакциях. Так, гипоталамус участвует в половых и агрессивно-оборонительных реакциях.
Гипоталамус обеспечивает вегетативный компонент всех сложных реакций организма, с помощью реализации функций симпатического и парасимпатического отделов вегетативной нервной системы и секреторных функций эндокринных желез. При этом у него нет прямых связей с органами. Он влияет через изменения активности спинальных и стволовых центров вегетативной нервной системы.

2) Инстинкт - совокупность врождённых сложных реакций организма, возникающих, как правило, почти в неизменной форме в ответ на внешние или внутренние раздражения. Любой инстинкт состоит из цепи реакций, в которой конец одного звена служит началом другого.
Классифицируют инстинкты по их биологическому и физиологическому значению. пищевой, проявляющийся в виде пищедобывания, захвата пищи, накопления её запасов и т. п.; оборонительный, состоящий как из пассивнооборонительных реакций (убегание, «замирание», «затаивание»), так и активной защиты при помощи зубов, когтей, рогов и т. п.
Инстинкты человека в значительной мере подчинены его сознательной деятельности, формирующейся в процессе воспитания. Уже в утробном периоде отдельные структуры нервной системы зародыша созревают быстрее других, обеспечивая тем самым готовность новорождённого организма к выживанию в специфических для него условиях существования.
Научение – это выработка в процессе онтогенеза приспособительных форм поведения. У высших животных и человека инстинктивное поведение и научение не существуют в поведении сами по себе, а переплетаются в единый поведенческий акт.
Пассивное (реактивное) научение имеет место во всех случаях, когда организм, не прилагая целенаправленных усилий реагирует на какие-то внешние факторы;
Оперантное научение (от лат. оperatio –действие) – это научение, в ходе которого организм добивается полезного результата с помощью активного поведения.

Билет №12

1. Физиология ретикулярной формации мозгового ствола. Влияния РФ на различные функции организма .

Ретикулярной формацией (РФ) называется сеть нейронов различных типов и размеров, имеющих многочисленные связи между собой, а также со всеми структурами ЦНС. Она располагается в толще серого вещества продолговатого, среднего и промежуточного мозга и регулирует уровень функциональной активности (возбудимости) всех нервных центров этих отделов ЦНС. Таким же образом она влияет на КБП.

2. Условные рефлексы. Виды условных рефлексов.

Условные рефлексы- приобретенные, не передаются по наследству, проявляются на любой раздражитель, непостоянные, могут выработаться и исчезнуть, не имеют готовых рефлекторных дуг, они формируются при определенных условиях на базе безусловных рефлексов, осуществляются за счет деятельности коры головного мозга. Например, открывание дверей квартиры ключом, включение телевизора пультом, чистка зубов по утрам - в общем практически все.

1. Подкорковые ядра (базальные ганглии) и их роль в регуляции

двигательных функций организма.

2. Специфические особенности ВНД человека. Понятие о сигнальных

системах.

1 .Помимо коры, образующей поверхностные слои конечного мозга, серое вещество в каждом из полушарий большого мозга залегает в виде отдельных ядер, или узлов. Эти узлы находятся в толще белого вещества, ближе к основанию мозга. Скопления серого вещества в связи с их положением называются базальными (подкорковыми, центральными) ядрами или узлами. К базальным ядрам полушарий относят полосатое тело, состоящее из хвостатого и чечевицеобразного ядер, ограды и миндалевидного тела.Полосатое тело получило свое название в связи с тем, что на горизонтальных и фронтальных разрезах мозга оно имеет вид чередующихся полос серого и белого вещества. Наиболее медиально и впереди находится хвостатое ядро. Оно располагается кпереди от таламуса, от которого (на горизонтальном разрезе) его отделяет полоска белого вещества - передняя ножка внутренней капсулы. Передний отдел хвостатого ядра утолщен и образует головку, которая составляет латеральную стенку переднего рога бокового желудочка. Располагаясь в лобной доле полушария, головка хвостатого ядра примыкает к переднему продырявленному веществу. В этом месте головка хвостатого ядра соединяется с чечевицеобразным ядром. Суживаясь кзади, головка продолжается в более тонкое тело, которое лежит в области дна центральной части бокового желудочка и отделяется от таламуса терминальной полоской белого вещества. Задний отдел хвостатого ядра - хвост постепенно истончается, изгибается книзу, участвует в образовании верхней стенки нижнего рога бокового желудочка. Хвост достигает миндалевидного тела, лежащего в переднемедиальных отделах височной доли (кзади от переднего продырявленного вещества). Латеральнее головки хвостатого ядра находится прослойка белого вещества - передняя ножка (бедро) внутренней капсулы, отделяющая это ядро от чечевицеобразного.Чечевицеобразное ядро, получившее свое название за сходство с чечевичным зерном, находится латеральнее таламуса и хвостатого ядра. От таламуса чечевицеобразное ядро отделяет задняя ножка (бедро) внутренней капсулы. Нижняя поверхность переднего отдела чечевицеобразного ядра прилежит к переднему продырявленному веществу и соединяется с хвостатым ядром. Медиальная часть чечевицеобразного ядра на горизонтальном разрезе головного мозга суживается и углом обращена к колену внутренней капсулы, находящемуся на границе таламуса и головки хвостатого ядра.Латеральная поверхность чечевицеобразного ядра выпуклая и обращена к основанию островковой доли полушария большого мозга. На фронтальном разрезе головного мозга чечевицеобразное ядро имеет форму треугольника, вершина которого обращена в медиальную, а основание - в латеральную сторону. Две параллельные вертикальные прослойки белого вещества, расположенные почти в сагиттальной плоскости, делят чечевииеобразное. ядро на три части. Наиболее латерально расположена скорлупа, имеющая более темную окраску. Медиальнее скорлупы находятся две светлые мозговые пластинки - медиальная и латеральная, которые объединяют общим названием «бледный шор».Медиальную пластинку называют медиальным бледным шаром, латеральную - латеральным бледным шаром. Хвостатое ядро и скорлупа относятся к филогенетически более новым образованиям. Бледный шар является более старым образованием.Ограда расположена в белом веществе полушария, сбоку от скорлупы, между последней и корой островковой доли. Ограда имеет вид тонкой вертикальной пластинки серого вещества. От скорлупы ее отделяет прослойка белого вещества - наружная капсула, от коры островка - такая же прослойка, получившая название «самая наружная капсула».Миндалевидное тело находится в белом веществе височной доли полушария, примерно на 1,5-2,0 см кзади от височного полюса.

2. Первая сигнальная система действительности -это система наших непосредственных ощущений, восприятий, впечатлений от конкретных предметов и явлений окружающего мира. Слово (речь) -это вторая сигнальная система (сигнал сигналов). Она возникла и развивалась на основе первой сигнальной системы и имеет значение лишь в тесной взаимосвязи с ней.Благодаря второй сигнальной системе (слову) у человека более быстро, чем у животных, образуются временные связи, ибо слово несет в себе общественно выработанное значение предмета. Временные нервные связи человека более устойчивы и сохраняются без подкрепления в течении многих лет.Слово является средством познания окружающей действительности, обобщенного и опосредованного отражения существенных ее свойств. Со словом "вводится новый принцип нервной деятельности -отвлечение и вместе с тем обобщение бесчисленных сигналов -принцип, обусловливающий безграничную ориентировку в окружающем мире и создающий высшее приспособление человека -науку”.Действие слова в качестве условного раздражителя может иметь такую же силу, как непосредственный первосигнальный раздражитель. Под влиянием слова находятся не только психические, но и физиологические процессы (это лежит в основе внушения и самовнушения).Вторая сигнальная система имеет две функции -коммуникативную (она обеспечивает общение между людьми) и функцию отражения объективных закономерностей. Слово не только дает наименование предмету, но и содержит в себе обобщение.Ко второй сигнальной системе относится слово слышимое, видимое (написанное) и произносимое.Выше были рассмотрены типологические особенности высшей нервной деятельности. Высшая нервная деятельность человека на три типа делится: 1) мыслительный; 2) художественный; 3) средний (смешанный).К мыслительному типу относятся лица со значительным преобладанием второй сигнальной системы над первой. У них более развито абстрактное мышление (математики, философы) ; непосредственное отражение действительности происходит у них в недостаточно ярких образах.К художественному типу относятся люди с меньшим преобладанием второй сигнальной системы над первой. Им присущи живость, яркость конкретных образов (художники, писатели, артисты, конструкторы, изобретатели и др.).Средний, или смешанный, тип людей занимает промежуточное положение между двумя первыми.Чрезмерное преобладание второй сигнальной системы, граничащее с отрывом ее от первой сигнальной системы, является нежелательным качеством человека."Нужно помнить, -говорил И.П, Павлов, -что вторая сигнальная система имеет значение через первую сигнальную систему и в связи с последней, а если она отрывается от первой сигнальной системы, то вы оказываетесь пустословом, болтуном и не найдете себе места в жизни”.У людей с чрезмерным преобладанием первой сигнальной системы, как правило, менее развита склонность к абстрагированию, теоретизации.Современные исследования высшей нервной деятельности характеризуются развитием интегрального подхода к изучению целостной работы мозга.

Регуляция нервной деятельности представляет собой процессы возбуждения и торможения в ЦНС. Вначале она возникает как элементарная реакция на раздражение. В процессе эволюции произошло усложнение нейрогуморальных функций, приводящее к образованию основных отделов нервной и эндокринной систем. В данной статье мы изучим один из главных процессов - торможение в ЦНС, виды и механизмы его осуществления.

Нервная ткань, её строение и функции

Одна из разновидностей животных тканей, названная нервной, имеет особое строение, обеспечивающее как процесс возбуждения, так и приводящее в действие функции торможения в ЦНС. Нервные клетки состоят из тела и отростков: коротких (дендритов) и длинного (аксона), который обеспечивает передачу нервных импульсов от одного нейроцита к другому. Окончание аксона нервной клетки контактирует с дендритами следующего нейроцита в местах, называемых синапсами. Они обеспечивают передачу биоэлектрических импульсов по нервной ткани. Причем возбуждение всегда движется в одном направлении - с аксона на тело или дендриты другого нейроцита.

Еще одно свойство, кроме возбуждения, протекающее в нервной ткани, - торможение в ЦНС. Оно является ответной реакцией организма на действие раздражителя, ведущей к снижению или полному прекращению двигательной или секреторной активности, в которой участвуют центробежные нейроны. Торможение в нервной ткани может возникать и без предварительного возбуждения, а только лишь под воздействием тормозного медиатора, например ГАМК. Он является одним из главных трансмиттеров торможения. Здесь же можно назвать такое вещество, как глицин. Эта аминокислота участвует в усилении тормозных процессов и стимулирует в синапсах выработку молекул гаммааминомаслянной кислоты.

И. М. Сеченов и его работы в нейрофизиологии

Выдающийся российский ученый, деятельности головного мозга доказал наличие в центральных отделах нервной системы особых комплексов клеток, способных к инактивации биоэлектрических процессов. Открытие центров торможения в ЦНС стало возможным благодаря применению И. Сеченовым трех видов экспериментов. К ним относятся: перерезание участков коры в различных зонах головного мозга, стимуляция отдельных локусов серого вещества физическими или химическими факторами (электрическим током, раствором хлорида натрия), а также метод физиологического возбуждения мозговых центров. И. М. Сеченов был прекрасным экспериментатором, проводя сверхточные разрезы в зоне между зрительными буграми и непосредственно в самом таламусе лягушки. Он наблюдал уменьшение и полное прекращение двигательной активности конечностей животного.

Так, нейрофизиологом был открыт особый вид нервного процесса - торможение в ЦНС. Виды и механизмы его образования мы рассмотрим более подробно в следующих разделах, а сейчас еще раз сакцентируем внимание на таком факте: в таких отделах, как продолговатый мозг и зрительные бугры, расположен участок, названный тормозным, или «сеченовским» центром. Ученый также доказал его наличие не только у млекопитающих животных, но и у человека. Более того, И. М. Сеченов открыл явление тонического возбуждения тормозных центров. Он понимал под этим процессом небольшое возбуждение в центробежных нейронах и связанных с ними мышцах, а также и в самих нервных центрах торможения.

Взаимодействуют ли нервные процессы?

Исследования выдающихся российских физиологов И. П. Павлова и И. М. Сеченова доказали, что работа центральной нервной системы характеризуется координацией рефлекторных реакций организма. Взаимодействие процессов возбуждения и торможения в ЦНС приводит к согласованной регуляции функций организма: двигательной активности, дыхания, пищеварения, выделения. Биоэлектрические процессы одновременно происходят в нервных центрах и могут последовательно меняться во времени. Это обеспечивает корреляцию и своевременное прохождение ответных рефлексов на сигналы внутренней и внешней среды. Многочисленные опыты, проведенные нейрофизиологами, подтвердили тот факт, что возбуждение и торможение в ЦНС - это ключевые нервные явления, в основе которых лежат некоторые закономерности. Остановимся на них подробнее.

Нервные центры коры головного мозга способны распространять оба вида процессов по всей нервной системе. Это свойство называется иррадиацией возбуждения или торможения. Противоположное явление - уменьшение или ограничение участка мозга, распространяющего биоимпульсы. Оно названо концентрацией. Оба вида взаимодействий ученые наблюдают в течение образования условных двигательных рефлексов. Во время начальной стадии формирования двигательных навыков, вследствие иррадиации возбуждения одновременно сокращаются сразу несколько групп мышц, не обязательно участвующих в выполнении формируемого двигательного акта. Только после многократных повторений формируемого комплекса физических движений (катания на коньках, лыжах, велосипеде), в результате концентрации процессов возбуждения в конкретных нервных очагах коры, все движения человека становятся высококоординированными.

Переключения в работе нервных центров могут происходить также вследствие индукции. Она проявляется при выполнении следующего условия: сначала происходит концентрация торможения или возбуждения, причем эти процессы должны быть достаточной силы. В науке известны два вида индукции: S-фаза (центральное торможение в ЦНС усиливает возбуждение) и отрицательная форма (возбуждение вызывает процесс торможения). Встречается также последовательная индукция. В этом случае нервный процесс меняется на противоположный в самом нервном центре. Исследования нейрофизиологов доказали тот факт, что поведение высших млекопитающих и человека определяется явлениями индукции, иррадиации и концентрации нервных процессов возбуждения и торможения.

Безусловное торможение

Рассмотрим более подробно виды торможения в ЦНС и остановимся на такой его форме, которая присуща как животным, так и человеку. Сам термин был предложен И. Павловым. Ученый считал этот процесс одним из врождённых свойств нервной системы и выделил два его вида: гаснущее и постоянное. Остановимся на них детальнее.

Допустим, в коре существует очаг возбуждения, генерирующий импульсы к рабочему органу (к мышцам, секреторным клеткам желез). Вследствие изменения условий внешней или внутренней среды возникает еще один возбужденный участок коры головного мозга. Он вырабатывает биоэлектрические сигналы большей интенсивности, что тормозит возбуждение в ранее активном нервном центре и его рефлекторной дуге. Гаснущее торможение в ЦНС приводит к тому, что интенсивность ориентировочного рефлекса постепенно уменьшается. Объяснение этому следующее: первичный раздражитель уже не вызывает процесса возбуждения в рецепторах афферентного нейрона.

Другой вид торможения, наблюдаемого как у человека, так и у животных, демонстрирует опыт, проведенный лауреатом нобелевской премии в 1904 году И. П. Павловым. Во время кормления собаки (с выведенной из щеки фистулой) экспериментаторы включали резкий звуковой сигнал - выделение слюны из фистулы прекращалось. Такой вид торможения ученый назвал запредельным.

Являясь врождённым свойством, торможение в ЦНС протекает по безусловно-рефлекторному механизму. Оно достаточно пассивно и не вызывает расхода большого количества энергии, приводя к прекращению условных рефлексов. Постоянное безусловное торможение сопровождает многие психосоматические заболевания: дискинезии, спастический и вялый параличи.

Что такое гаснущий тормоз

Продолжая изучать механизмы торможения в ЦНС, рассмотрим, что представляет собой один из его видов, названный гаснущим тормозом. Хорошо известно, что ориентировочный рефлекс представляет собой реакцию организма на воздействие нового постороннего сигнала. В этом случае в коре мозга образуется нервный центр, находящийся в состоянии возбуждения. Он и формирует рефлекторную дугу, отвечающую за реакцию организма и называемую ориентировочным рефлексом. Этот рефлекторный акт вызывает торможение условного рефлекса, происходящего в данный момент. После многоразового повторения постороннего раздражителя рефлекс, называемый ориентировочным, постепенно снижается и наконец исчезает. А значит, не вызывает больше торможения условного рефлекса. Такой сигнал и получил название гаснущего тормоза.

Таким образом, внешнее торможение условных рефлексов связано с влиянием на организм постороннего сигнала и является врождённым свойством центральной и периферической нервной системы. Внезапный или новый раздражитель, например, болевое ощущение, посторонний звук, изменение освещенности, не только вызывает ориентировочный рефлекс, но также способствует ослаблению или даже полному прекращению условно-рефлекторной дуги, активной в данный момент. Если посторонний сигнал (кроме болевого) действует повторно, торможение условного рефлекса проявляется меньше. Биологическая роль безусловной формы нервного процесса заключается в проведении ответной реакции организма на раздражитель, наиболее важный в данный момент.

Внутреннее торможение

Его другое название, используемое в физиологии высшей нервной деятельности, - условное торможение. Главная предпосылка возникновения такого процесса - отсутствие подкрепления сигналов, поступающих из внешнего мира, врождёнными рефлексами: пищеварительным, слюноотделительным. Возникшие в этих условиях процессы торможения в ЦНС требуют определенного временного интервала. Рассмотрим их виды более подробно.

Например, дифференцировочное торможение возникает как ответ на сигналы окружающей среды, совпадающие по амплитуде, интенсивности и силе к условному раздражителю. Эта форма взаимодействия нервной системы и окружающего мира позволяет организму более тонко различать раздражители и вычленять из их совокупности тот, который получает подкрепление врожденным рефлексом. Например, на звук звонка с силой 15 Гц, подкрепленный кормушкой с пищей, у собаки выработали условную слюноотделительную реакцию. Если к животному применить еще один звуковой сигнал, силой 25 Гц, не подкрепляя его пищей, в первой серии опытов у собаки из фистулы слюна будет выделяться на оба условных раздражителя. Через некоторое время у животного произойдет дифференциация этих сигналов, и на звук, силой 25 Гц слюна из фистулы перестанет выделяться, то есть разовьется дифференцировочное торможение.

Освободить мозг от информации, потерявшей жизненно значимую роль для организма, - эту функцию как раз и выполняет торможение в ЦНС. Физиология опытным путем доказала, что условные двигательные реакции, хорошо закрепленные выработанными навыками, могут сохраняться на протяжении всей жизни человека, например, катание на коньках, езда на велосипеде.

Подводя итог, можно сказать, что процессы торможения в ЦНС - это ослабление или прекращение определенных реакций организма. Они имеют очень большое значение, так как все рефлексы организма корригируются в соответствии с измененными условиями, а если условный сигнал потерял свое значение, то даже полностью могут исчезать. Различные виды торможения в ЦНС являются базовыми для таких способностей психики человека, как сохранение самообладания, различение раздражителей, ожидание.

Запаздывающий вид нервного процесса

Опытным путем можно создать ситуацию, при которой ответ организма на условный сигнал из внешней среды проявляется еще до воздействия безусловного раздражителя, например пищи. При увеличении промежутка времени между началом воздействия условного сигнала (свет, звук, например, удары метронома) и моментом подкрепления до трех минут выделение слюны на вышеназванные условные раздражители все более запаздывает и проявляется только в момент, когда перед животным появляется кормушка с пищей. Отставание ответа на условный сигнал характеризует процессы торможения в ЦНС, названные запаздывающим видом, при котором его время протекания соответствует интервалу запаздывания безусловного раздражителя, например пищи.

Значение торможения в ЦНС

Организм человека, образно выражаясь, находится «под прицелом» огромного количества факторов внешней и внутренней среды, на которые он вынужден реагировать и образовывать множество рефлексов. Их нервные центры и дуги формируются в головном и спинном мозге. Перегруженность нервной системы огромным количеством возбужденных центров в коре большого мозга негативно сказывается на психическом здоровье человека, а также снижает его работоспособность.

Биологические основы поведения человека

Оба вида активности нервной ткани, как возбуждение, так и торможение в ЦНС, являются основой высшей нервной деятельности. Она обуславливает физиологические механизмы психической деятельности человека. Учение высшей нервной деятельности было сформулировано И. П. Павловым. Современная его трактовка звучит следующим образом:

  • Возбуждение и торможение в ЦНС, происходящие во взаимодействии, обеспечивают сложные психические процессы: память, мышление, речь, сознание, а также формируют сложные поведенческие реакции человека.

Чтобы составить научно обоснованный режим учебы, труда, отдыха, ученые применяют знания закономерностей высшей нервной деятельности.

Биологическое значение такого активного нервного процесса, как торможение, можно определить следующим образом. Изменение условий внешней и внутренней среды (отсутствие подкрепления условного сигнала врождённым рефлексом) влечет за собой адекватные изменения приспособительных механизмов в организме человека. Поэтому приобретенный рефлекторный акт угнетается (гаснет) или вовсе исчезает, так как становится для организма нецелесообразным.

Что такое сон?

И. П. Павлов в своих работах экспериментально доказал тот факт, что процессы торможения в ЦНС и сон имеют единую природу. В период бодрствования организма на фоне общей активности коры головного мозга все же диагностируются отдельные её участки, охваченные внутренним торможением. Во время сна оно иррадиирует по всей поверхности больших полушарий, достигая подкорковых образований: зрительных бугров (таламуса), гипоталамуса, и лимбической системы. Как указывал выдающийся нейрофизиолог П. К. Анохин, все вышеперечисленные части центральной нервной системы, ответственные за поведенческую сферу, эмоции и инстинкты, во время сна снижают свою активность. Это влечет за собой снижение генерирования поступающих из-под корки. Таким образом, активизация коры снижается. Это обеспечивает возможность покоя и восстановления обмена веществ как в нейроцитах большого мозга, так и во всем организме в целом.

Опытами других ученых (Гесса, Экономо) были установлены особые комплексы нервных клеток, входящие в неспецифические ядра Процессы возбуждения, диагностируемые в них, вызывают снижение частоты биоритмов коры, которые можно расценивать как переход от активного состояния (бодрствования) ко сну. Исследования таких участков головного мозга, как и ІІІ желудочек, подтолкнули ученых к идее о наличии центра регуляции сна. Он анатомически связан с участком мозга, ответственным за бодрствование. Поражение этого локуса коры вследствие травмы или в результате наследственных нарушений у человека приводит к патологическим состояниям бессонницы. Также отметим тот факт, что регуляция такого жизненно важного для организма процесса торможения, как сон, осуществляется нервными центрами промежуточного мозга и подкорковых миндалевидного, ограды и чечевицеобразного.